Operating instructions

ecomot200
Monitor
FD-2
Contents

1 Preliminary note ... 4
 1.1 Symbols used ... 4
 1.2 Warning signs used .. 4

2 Safety instructions ... 5
 2.1 General ... 5
 2.2 Target group ... 5
 2.3 Electrical connection ... 5
 2.4 Operation ... 5
 2.5 Location ... 6
 2.6 Housing temperature ... 6
 2.7 Tampering with the device ... 6

3 Functions and features ... 6

4 Operating and display elements .. 9
 4.1 Display stand-by mode ... 10

5 Installation .. 10
 5.1 Installation of the device ... 10
 5.2 Mounting of the sensors .. 10

6 Electrical connection .. 11
 6.1 Terminal connection .. 11
 6.2 Voltage supply (power) ... 11
 6.2.1 AC supply ... 11
 6.2.2 DC supply ... 11
 6.3 Inputs ... 12
 6.3.1 Connection of the sensors (In1, 2) 12
 6.3.2 Reset inputs (reset 1 and 2) 12
 6.3.3 Typical input circuit F...-x 13
 6.4 Outputs .. 14
 6.4.1 Relay outputs (Out1, 2) 14
 6.4.2 Transistor outputs (Out1, 2) 14

7 Navigation and parameter overview 15
 7.1 System parameters .. 16
 7.1.1 SOx ... 16
 7.1.2 ST1 ... 16
This document is the original instructions.
1 Preliminary note

This document is part of the device and contains information about the correct handling of the product.

This document is intended for specialists. These specialists are people who are qualified by their training and their experience to see risks and to avoid possible hazards that may be caused during operation or maintenance of the device.

Read this document before use to familiarise yourself with operating conditions, installation and operation. Keep this document during the entire duration of use of the device.

Adhere to the warning notes and safety instructions.

1.1 Symbols used

 ► Instructions
 > Reaction, result
 [...] Designation of keys, buttons or indications
 → Cross-reference

 ! Important note
 Non-compliance can result in malfunction or interference.

 Information

 Supplementary note.

1.2 Warning signs used

⚠️ WARNING
Warning of serious personal injury.
Death or serious irreversible injuries may result.

⚠️ CAUTION
Warning of personal injury.
Slight reversible injuries may result.

NOTE
Warning of damage to property.
2 Safety instructions

2.1 General
Follow the operating instructions. Non-observance of the instructions, operation which is not in accordance with use as prescribed below, wrong installation or incorrect handling can affect the safety of operators and machinery.

The installation and connection must comply with the applicable national and international standards. Responsibility lies with the person installing the device.

2.2 Target group
The device must only be installed, connected and put into operation by a qualified electrician.

2.3 Electrical connection
Disconnect the unit externally before handling it. Also disconnect any independently supplied relay load circuits.

Make sure that the external voltage is generated and supplied according to the requirements for safe extra-low voltage (SELV) since this voltage is supplied without further measures near the operating elements and at the terminals for the supply of connected sensors.

The wiring of all signals in connection with the SELV circuit of the device must also comply with the SELV criteria (safety extra-low voltage, safe electrical isolation from other electric circuits).

If the externally supplied or internally generated SELV voltage is externally grounded, the responsibility lies with the user in accordance with the applicable national installation regulations. All statements in this manual refer to the unit the SELV voltage of which is not grounded.

It is not allowed to supply external voltage to the terminals for the pulse pick-up supply. The consumption of current which exceeds the value given in the technical data is not allowed.

An external main switch must be installed for the unit which can switch off the unit and all related circuits. This main switch must be clearly assigned to the unit.

2.4 Operation
Be careful when handling the unit once power is applied. This is only allowed by qualified personnel due to the protection rating IP 20.
The design of the unit corresponds to the protection class II except for the terminal blocks. Protection against accidental contact (finger protection to IP 20) for qualified personnel is only guaranteed if the terminal screw has been completely screwed in.

2.5 Location
For the correct operation the unit must be mounted in a housing (protection rating IP 40 or higher) which can only be opened using a tool or in a locked control cabinet.

The device has been tested for an impact energy of 1 joule according to EN61010.

2.6 Housing temperature
As described in the technical specifications below the device can be operated in a wide ambient temperature range. Because of the additional internal heating the operating elements and the housing walls can have high perceptible temperatures when touched in hot environments.

2.7 Tampering with the device
In case of malfunction of the unit or queries please contact the manufacturer. Any tampering with the device can seriously affect the safety of operators and machinery. This is not permitted and leads to the exclusion of any liability and warranty claims.

3 Functions and features
The monitor FD-2 is a pulse evaluation system for direction monitoring.

It receives pulses from external pulse pick-ups via 2 separate input channels, evaluates the pulse shifts and switches the 2 outputs according to the set parameters.

The unit enables monitoring of operational status like rotational direction "left" / "right" or faults like "wrong direction" or "standstill".
IN 1 before IN 2 (here for example left-hand movement)
1: pulse pick-ups
2: switching cams
3: switching output 1, message IN 1 before IN 2 (here ON)
4: switching output 2, message IN 2 before IN 1 (here OFF)

⚠️ The input pulses must be phase-shifted and overlap for min. 0.25 ms.

Basic switching behaviour of the outputs
- When the pulse sequence is 'IN 1 before IN 2', output 1 switches, i.e. relay 1 energises and transistor output 1 is switched.
 Relay 2 is de-energised, transistor output 2 is blocked.
- When the pulse sequence is 'IN 2 before IN 1', output 2 switches, i.e. relay 2 energises and transistor output 2 is switched.
 Relay 1 is de-energised, transistor output 1 is blocked.

Even in case of a temporary standstill the respective output remains switched until one of the following events occurs.
- The pulse sequence changes.
- The output is reset when the programmed reset time has elapsed.
- The operating voltage is switched off.
IN 2 before IN 1 (here for example right-hand movement)

1: pulse pick-ups
2: switching cams
3: switching output 1, message IN 1 before IN 2 (here OFF)
4: switching output 2, message IN 2 before IN 1 (here ON)

⚠️ WARNING
The device is not approved for safety-related tasks in the field of operator protection.
Using an electrical connection of the outputs from two or more units to achieve a redundant circuit, they can also be used for safety-related tasks. All applicable technical standards must be followed.
4 Operating and display elements

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OLED display</td>
</tr>
<tr>
<td>1a</td>
<td>Indicators for input channels and operating modes</td>
</tr>
<tr>
<td></td>
<td>CH... Input channels</td>
</tr>
<tr>
<td></td>
<td>RUN Run mode (normal operating mode)</td>
</tr>
<tr>
<td></td>
<td>PRG Programming mode (setting of the parameter values)</td>
</tr>
<tr>
<td></td>
<td>KEY Locking</td>
</tr>
<tr>
<td>1b</td>
<td>Actual values and parameter values (5-digit, numerical)</td>
</tr>
<tr>
<td></td>
<td>Rotational speed 0...60,000 RPM</td>
</tr>
<tr>
<td></td>
<td>Pulses 0.1...1,000.0 Hz</td>
</tr>
<tr>
<td></td>
<td>rotational direction 0DIR = no rotational direction or pulse sequence detected 1DIR = IN 1 before IN 2 2DIR = IN 2 before IN 1</td>
</tr>
<tr>
<td></td>
<td>Outside the value ranges the display shows "----".</td>
</tr>
<tr>
<td>1c</td>
<td>Parameter abbreviation and units (3-digit, alphanumeric)</td>
</tr>
<tr>
<td>1d</td>
<td>Display is in stand-by mode, no values visible (→ 4.1)</td>
</tr>
<tr>
<td>2</td>
<td>[▲] and [▼] buttons</td>
</tr>
<tr>
<td></td>
<td>Selection of the actual value display, parameter selection, setting of the parameter values</td>
</tr>
</tbody>
</table>
3 [Enter/►] button
Selection of the operating mode, acknowledgement of the parameter value, front reset

4 LEDs In1/2 (yellow) Input pulses

5 LEDs Out1/2 (green) Switching status of the outputs 1 and 2

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Output is not switched. (relay de-energised, transistor blocked)</td>
</tr>
<tr>
<td>on</td>
<td>Output is switched. (relay energised, transistor switched)</td>
</tr>
<tr>
<td>Flashing quickly</td>
<td>Output is kept latched. (parameter SOx, Store Output)</td>
</tr>
<tr>
<td>Flashing slowly</td>
<td>The delay time has an effect on the output. The output switches when the delay time has elapsed and the trigger event is still present (parameter DTx, Delay Time).</td>
</tr>
</tbody>
</table>

6 Panel for labelling

4.1 Display stand-by mode
If no button is pressed for more than 10 minutes, the device changes to the stand-by mode. Values and units are no longer visible. The stand-by mode can be identified by a flashing rectangle.

Even if no values and units are visible, the device continues its monitoring function on the basis of the set parameters and switches the relay and transistor outputs accordingly.

Press any button to switch the display on again.

5 Installation

5.1 Installation of the device
► Install the device on a 35 mm DIN rail.
► Leave enough space between the unit and the top and bottom of the control cabinet to enable air circulation and to avoid excessive heating.
► Take into account the internal heating of all units when mounting several units side by side. The environmental conditions must be observed for every unit.

5.2 Mounting of the sensors
► Follow the manufacturer’s installation instructions.
6 Electrical connection

6.1 Terminal connection

![Monitor FD-2 diagram]

Terminal connection

WARNING
Do not use unconnected terminals such as terminal 9 as support point terminal.

6.2 Voltage supply (power)

- Voltage supply see type label.
- The device may only be operated using one of the possible voltage connections, i.e. either terminals 7/8 (AC) or terminals 1/2 (24 V DC).
- All supply and signal cables must be laid separately. Use a screened cable if required in the application.

6.2.1 AC supply

- The AC supply cable must be protected according to the cross-section used (max. 16 A).

If the unit is supplied on AC, the low voltage provided for the sensor supply meets the SELV criteria according to EN 61010, overvoltage category II, soiling degree 2.

6.2.2 DC supply

- The SELV criteria (safety extra-low voltage) must be met for the DC supply.
The DC supply cable L+ (terminal 2) must be protected externally with a 315 mA T fuse (5 x 20 mm or similar).

The DC supply terminals are directly connected to the sensor supply terminals.

6.3 Inputs

6.3.1 Connection of the sensors (In1, 2)

<table>
<thead>
<tr>
<th>DC PNP to FD-2</th>
<th>DC NPN to FD-2</th>
<th>AC/DC to FD-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram](DC PNP to FD-2)</td>
<td>![Diagram](DC NPN to FD-2)</td>
<td>![Diagram](AC/DC to FD-2)</td>
</tr>
</tbody>
</table>

Connection of the sensors

The connection of mechanical switch contacts is not recommended since they tend to bounce and produce faulty pulses.

The terminals 5/6 can be used for the sensor supply or for the reset inputs.

6.3.2 Reset inputs (reset 1 and 2)

The start-up delay can be started or a saved error can be reset via the reset inputs (terminals 17/18).

- The internal +24 V DC voltage (terminal 5) or an external +24 V DC voltage is connected with terminal 17 or 18 via a closing contact.
 - Reset for output 1 = terminal 17
 - Reset for output 2 = terminal 18
- If an external voltage is used, the negative reference point of this voltage must be connected to terminal 1 of the monitor.

When the contact is opened (+24 V DC no longer applied), the start-up delay or the memory reset starts.
A +24 V DC continuous signal leads to a permanent bridging of the monitoring, i.e. the same state as during the start-up delay is indicated. When the voltage is no longer applied and the set start-up delay has elapsed, monitoring starts.

6.3.3 Typical input circuit F...-x
6.4 Outputs

6.4.1 Relay outputs (Out1, 2)

- To prevent excessive wear and to comply with the EMC standards, interference suppression of the contacts is required for switching inductive loads.

⚠️ **WARNING**

If the device is operated on an AC supply (terminals 7/8) this must use the same supply cable as the voltage supply to switch an AC voltage via the relay outputs.

ℹ️ If the relay outputs are used for switching very small currents (e.g. PLC inputs), considerable contact resistance can arise. In this case use the transistor outputs.

6.4.2 Transistor outputs (Out1, 2)

- The transistor outputs need an external voltage of +24 V DC on terminal 3.
- Connect the reference point (GND) of the external power supply to terminal 1 of the monitor. Otherwise no switching operation is possible.
- The SELV criteria (safety extra-low voltage) must be met for the DC supply of the transistor outputs.
- The DC supply cable L+ (terminal 3) must be protected externally with a 315 mA T fuse (5 x 20 mm or similar).
7 Navigation and parameter overview

The pushbuttons [▲] / [▼] and [Enter/►] are used for the navigation, entry of values and acknowledgement within the parameters arranged in columns.

1: Display: rotational speed / input frequency on input 1
2: Display: rotational direction
 0DIR = no rotational direction or pulse sequence detected
 1DIR = IN 1 before IN 2
 2DIR = IN 2 before IN 1
3: Back to the RUN mode

A: System parameters
B: Application parameters
7.1 System parameters

7.1.1 SOx

Store Output (latching function outputs 1/2)

When this parameter is active, the respective output does not switch back automatically but must be reset. A reset deletes the last detected direction and sets the display to "0DIR".

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>inactive</td>
</tr>
<tr>
<td>1</td>
<td>front reset ([Enter/►] > 3 s)</td>
</tr>
<tr>
<td>2</td>
<td>front reset and external reset</td>
</tr>
</tbody>
</table>

Default values: 0 = (inactive)

7.1.2 ST1

Start-Up Delay Time

Enables the suppression of error messages when a plant is started. When the device is switched on or when the 24 V signal is removed from the reset input, the respective output for the time set here is in the defined state (SC1).

Note: only useful in combination with SC1

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0...1000.0 s</td>
<td></td>
</tr>
</tbody>
</table>

Default value: 0.0 (no start-up delay)

7.1.3 SC1

Start-Up Conditions

Determines the start-up behaviour for both outputs in connection with the start-up delay time (ST1).

1. **Suppression of a direction signal**
 - during ST1: output 1 OFF, output 2 OFF
 - after ST1: outputs switch according to the incoming pulse sequence

2. **Set output 1**
 - during ST1: output 1 ON, output 2 OFF
 - after ST1: outputs switch according to the incoming pulse sequence

3. **Set output 2**
 - during ST1: output 1 OFF, output 2 ON
 - after ST1: outputs switch according to the incoming pulse sequence
Suppression of the message IN 2 before IN 1

<table>
<thead>
<tr>
<th>switch-on moment</th>
<th>both outputs OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>during ST1</td>
<td>output 1 ON when detecting IN 1 before IN 2, output 2 OFF</td>
</tr>
<tr>
<td>after ST1</td>
<td>outputs switch according to the incoming pulse sequence</td>
</tr>
</tbody>
</table>

Suppression of the message IN 1 before IN 2

<table>
<thead>
<tr>
<th>switch-on moment</th>
<th>both outputs OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>during ST1</td>
<td>output 1 OFF, output 2 ON when detecting IN 2 before IN 1</td>
</tr>
<tr>
<td>after ST1</td>
<td>outputs switch according to the incoming pulse sequence</td>
</tr>
</tbody>
</table>

Set outputs 1 and 2 until the first detection of direction

<table>
<thead>
<tr>
<th>switch-on moment</th>
<th>both outputs ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>during ST1</td>
<td>after the first detection of direction the "wrong" relay de-energises, e.g. if IN 1 before IN 2, output 1 remains ON and output 2 changes to OFF</td>
</tr>
<tr>
<td>after ST1</td>
<td>outputs switch according to the incoming pulse sequence</td>
</tr>
</tbody>
</table>

Note: only useful in combination with ST1

Values: 1...6

Default value: 1 (suppression of a direction signal)

Operating principle without start-up parameters ST1 and SC1:

At the switch-on moment both outputs are OFF. After power on of the monitor the outputs switch according to the pulse sequence.

Schematics (→ 3 Functions and features)

7.1.4 FP1

Failure Pulses (pulse suppression for start-up and run-down)

Enables the suppression of direction-dependent pulses. The respective output does not switch until the pulse number > FP1. If for example a shaft or a rotor briefly rotates in the opposite direction before standstill, this parameter prevents that a change of direction is signalled. This is also so for the first start-up.

Values: 0...100

Default value: 0
7.1.5 NC1
Number of Cams

Number of cams detected per revolution. On the basis of this value the monitor calculates the rotational speed (measured frequency ÷ NCx = displayed speed in RPM). For frequency measurements NCx = 1 should remain set.

<table>
<thead>
<tr>
<th>Values</th>
<th>1…999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1</td>
</tr>
</tbody>
</table>

7.1.6 EVM
Evaluation Mode

0
"Fast" detection of direction
The output switches on with the first input pulse.
If the pulse sequence changes, the output switches back immediately.
If a sensor fails, the output changes with each damping and undamping of the remaining sensor.

1
"Safe" detection of direction
The output does not switch until the second sensor has also sent a pulse to the respective input.
If the pulse sequence changes, the output switches back immediately.
If a sensor fails, the set relay de-energises after the first pulse of the remaining sensor and remains de-energised (transistor output blocked).

<table>
<thead>
<tr>
<th>Values</th>
<th>0, 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>1 ("safe" detection of direction)</td>
</tr>
</tbody>
</table>

7.1.7 DIM
Dimension (display format)

Indication in Hz or RPM (revolutions per minute). When a new unit is selected, the monitor converts all existing values into the new unit!

<table>
<thead>
<tr>
<th>Values</th>
<th>0 = RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 = Hz</td>
</tr>
<tr>
<td>Default</td>
<td>0 = RPM</td>
</tr>
</tbody>
</table>

7.1.8 VER
Software version

The installed software version is displayed (5-digit number with abbreviation VCO).
7.2 Application parameters

7.2.1 CTx

Cycle Time (reset time for output 1/2)

<table>
<thead>
<tr>
<th>Values</th>
<th>0.0...1000.0 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default values</td>
<td>0,0 (reset time not active)</td>
</tr>
</tbody>
</table>

With active reset time the corresponding output switches back when the set time has elapsed, if no direction-dependent pulses have been detected within the reset time. With inactive reset time (0.0 s) the corresponding output remains switched according to the pulse sequence last detected. (→ 3 Functions and features).

7.2.2 DTx

Delay Time (for outputs 1/2)

<table>
<thead>
<tr>
<th>Values</th>
<th>0.0...1000.0 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default values</td>
<td>0.0 (no delay time)</td>
</tr>
</tbody>
</table>

Enables a delayed switching of the outputs 1/2. The respective output does not switch until the set delay time has elapsed and the detected pulse sequence continues. The delay time is only effective for switching, not for switching back the respective output.

7.2.3 FTx

Fleeting Time (for outputs 1/2)

<table>
<thead>
<tr>
<th>Values</th>
<th>0.0...1000.0 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default values</td>
<td>0.0 (fleeting time not active)</td>
</tr>
</tbody>
</table>

If a pulse sequence is detected, the output changes its state during the set time and then switches back to the initial state.

Note It is not useful to activate a fleeting time and the latching function SOx for an output at the same time.
8 Programming

⚠️ WARNING
If programming takes place during operation, dangerous contact voltage may occur. Therefore ensure that programming is done by a qualified electrician.

⚠️ Parameter changes during operation, especially changes to the switching function and the switch points can lead to malfunction in the plant. Therefore disconnect it during the change and then check the function.

<table>
<thead>
<tr>
<th>Programming consists of 6 steps:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Change from the RUN mode to the parameter range 1 or 2 [Enter/►]</td>
</tr>
<tr>
<td>2. Selection of the requested parameter (FOx, SOx, NCx, etc.) [▲] / [▼]</td>
</tr>
<tr>
<td>3. Change to the PRG mode [Enter/►]</td>
</tr>
<tr>
<td>4. Setting or changing the parameter value [▲] / [▼]</td>
</tr>
<tr>
<td>5. Acknowledgement of the set parameter value [Enter/►] > 3 s</td>
</tr>
<tr>
<td>6. Return to the RUN mode [Enter/►] > 3 s</td>
</tr>
</tbody>
</table>

8.1 Programming example DT1 (Delay Time, output 1)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change from the RUN mode to the parameter range (here 1)</td>
<td></td>
</tr>
<tr>
<td>► Briefly press [Enter/►] once.</td>
<td>CH1 RUN</td>
</tr>
<tr>
<td>> The 1st parameter range is displayed.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>▲vP</td>
</tr>
<tr>
<td>Selection of the requested parameter (here DT1)</td>
<td></td>
</tr>
<tr>
<td>► Press the [▼] button until the parameter DT1 is displayed with the currently set value (here default value 0.0.)</td>
<td>CH1 RUN</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DT1</td>
</tr>
<tr>
<td>Change to the PRG mode</td>
<td></td>
</tr>
<tr>
<td>► Briefly press [Enter/►] once.</td>
<td>CH1 RUN</td>
</tr>
<tr>
<td>> The unit is in the programming mode.</td>
<td></td>
</tr>
<tr>
<td>> PRG indicator visible, parameter abbreviation flashes.</td>
<td>CH1 RUN</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>DT1</td>
</tr>
</tbody>
</table>
Setting or changing the parameter value

- Press \([\uparrow]/[\downarrow]\) until the requested parameter value is displayed (→ 8.2.3 Numerical entries).

Acknowledgement of the set parameter value

- Press \([\text{Enter/}↑]\) until the parameter abbreviation no longer flashes and the indicator PRG has disappeared.
 > The new parameter value is indicated and effective.

Return to the RUN mode

- Press \([\text{Enter/}↑]\) for about 3 s or wait for the time-out function (approx. 15 s).
 > The unit is again in the RUN mode, the current value is indicated.

8.2 Notes on programming

8.2.1 RUN mode

⚠️ During programming the unit internally remains in the RUN mode (RUN indicator visible).

This means that until a new value is acknowledged with \([\text{Enter/}↑]\), the unit carries out its monitoring function on the basis of the previously set parameters and switches the relay and transistor outputs accordingly.

ℹ️ The monitoring function of the monitor is deactivated by continuously pressing \([\text{Enter/}↑]\) in the RUN mode. The deactivation is effective as long as the button is pressed.

8.2.2 Time Out function

If during programming no pushbutton is pressed for approx. 15 s, this is seen as a cancellation.

Parameter changes which are not acknowledged with \([\text{Enter/}↑]\) are rejected. The previously set parameter value is restored and remains effective for the monitoring functions.

8.2.3 Numerical entries

- Press \([\uparrow]/[\downarrow]\) and hold it.

The smallest decade becomes active and is counted up or down depending on the selected pushbutton (e.g. 1, 2, 3,...0). Then comes the next decade, etc.
As soon as the pushbutton is released, the active decade flashes. It is set by pressing [▲] or [▼] several times. The preceding decade then flashes and can be set.

8.2.4 Factory Reset
The factory default values can be restored by pressing [▲] and [▼] simultaneously during power on. All previously entered parameter values are lost.

8.2.5 KEY function (locking)
The unit can be locked to prevent incorrect entries. After locking, only the actual value indication can be switched with the [▲] and [▼] buttons. Parameter range and PRG mode can no longer be selected.

<table>
<thead>
<tr>
<th>Locking</th>
<th>Unlocking</th>
</tr>
</thead>
<tbody>
<tr>
<td>► Press [▲] and [▼] simultaneously and hold them pressed.</td>
<td>► Press [▲] and [▼] simultaneously and hold them pressed.</td>
</tr>
<tr>
<td>> The KEY indicator flashes.</td>
<td>> The KEY indicator flashes.</td>
</tr>
<tr>
<td>► Release the pushbuttons when the KEY indicator is continuously indicated.</td>
<td>► Release the pushbuttons when the KEY indicator is no longer indicated.</td>
</tr>
</tbody>
</table>
10 Technical data

10.1 Overview

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>DR2505</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor type</td>
<td>FD-2</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>see type label</td>
</tr>
<tr>
<td>Frequency range</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td></td>
</tr>
<tr>
<td>Sensor types</td>
<td>PNP/NPN: NAMUR</td>
</tr>
<tr>
<td>Sensor supply</td>
<td>24 V DC</td>
</tr>
<tr>
<td>Input frequency</td>
<td>≤ 1 kHz</td>
</tr>
<tr>
<td>Relay outputs</td>
<td>2 changeover contacts; potential free</td>
</tr>
<tr>
<td>Switching current</td>
<td>≤ 6 A</td>
</tr>
<tr>
<td>Switching voltage</td>
<td>≤ 250 V AC; B300, R300</td>
</tr>
<tr>
<td>Transistor outputs</td>
<td>PNP switched; externally supplied</td>
</tr>
<tr>
<td>Switching current</td>
<td>≤ 15 mA; short-circuit proof</td>
</tr>
<tr>
<td>Switching voltage</td>
<td>24 V DC (± 20 %)</td>
</tr>
<tr>
<td>Protection housing / terminals</td>
<td>IP 50 / IP 20</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>-40...60 °C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40...85 °C</td>
</tr>
<tr>
<td>Max. relative air humidity</td>
<td>80 % (31 °C)</td>
</tr>
<tr>
<td></td>
<td>linearly decreasing to 50 % (40 °C)</td>
</tr>
<tr>
<td>Art. no.</td>
<td>DR2505</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Maximum operating altitude</td>
<td>2000 m above sea level</td>
</tr>
<tr>
<td>Connection</td>
<td>21 dual-chamber terminals;</td>
</tr>
<tr>
<td></td>
<td>2 x 2.5 mm² (AWG 14)</td>
</tr>
<tr>
<td>cULus test conditions</td>
<td>housing dimensions for temperature rise test:</td>
</tr>
<tr>
<td></td>
<td>200 x 200 x 150 mm</td>
</tr>
</tbody>
</table>

Data sheets can be found at:
www.ifm.com → Data sheet search → Article number

10.2 Approvals / standards
EC declarations of conformity, approvals etc. can be downloaded at:
www.ifm.com → Data sheet search → Article number → More information

11 Maintenance, repair, disposal
The device is maintenance-free.

► Do not open the housing as the device does not contain any components which can be repaired by the user. The device must only be repaired by the manufacturer.

► Dispose of the device in accordance with the national environmental regulations.