Device manual
Ethernet camera
for mobile applications

efector250

O2M110
# Contents

1 Safety instructions  
2 Functions and features  
   2.1 Features at a glance  
3 Mounting  
   3.1 Mounting accessories  
   3.2 Mounting dimensions  
   3.3 Mounting location  
4 Electrical connection  
   4.1 Ethernet camera  
      4.1.1 Ethernet connection  
      4.1.2 Interference due to external influences  
   4.2 PDM360  
   4.3 PC/notebook  
   4.4 Connection principle without hub/switch  
      - One camera at one PDM360  
      - One camera at one PC/notebook (service mode)  
   4.5 Connection principle with hub/switch  
      - Several cameras at one PDM360  
5 Operating and display elements  
6 Set-up  
   6.1 IP addresses  
      6.1.1 IP address allocation PDM360  
      6.1.2 IP address allocation cameras  
   6.2 Parameter setting PDM360  
      6.2.1 Library ifm_Camera_O2M_Vxxxxxx  
      6.2.2 Function block CAM_O2M  
      6.2.3 Parameter overview  
      6.2.4 MODE combinations (1...4 cameras)  
7 Technical data  
   7.1 O2M110/111  
8 Maintenance, repair and disposal  
9 Approvals/standards
Licences and trademarks
Microsoft®, Windows®, Windows XP® and Windows Vista® are registered trademarks of Microsoft Corporation. All trademarks and company names are subject to the copyright of the respective companies.

Open source software
This unit contains (maybe modified) Open Source software, which is subject to special licensing terms. For copyright information and licensing terms please refer to: www.ifm.com/int/GNU
For software subject to the GNU General Public License or the GNU Lesser General Public License the source code can be requested against payment of the copying and shipping costs.
1 Safety instructions

These instructions are part of the device. They contain information and illustrations about the correct handling of the device and must be read before installation or use.

Adhere to the instructions. Non-observance of the instructions, operation which is not in accordance with use as prescribed below, wrong installation or handling can result in serious harm concerning the safety of persons and plant.

These instructions are intended for “authorised” persons according to the EMC and low-voltage directives. The device must only be installed, connected and put into operation by a qualified electrician.

Disconnect the device externally before handling it. If necessary, also disconnect any independently supplied output load circuits.

If the device is not supplied by the mobile on-board system (12/24 V battery operation), it must be ensured that the external voltage is generated and supplied according to the criteria for safety extra-low voltage (SELV) as this voltage is supplied without further measures to the connected controller, the sensors and the actuators.

The wiring of all signals in connection with the SELV circuit of the device must also comply with the SELV criteria (safety extra-low voltage, safe electrical separation from other electric circuits).

If the supplied SELV voltage has an external connection to ground (SELV becomes PELV), the responsibility lies with the user and the respective national regulations for installation must be complied with. All statements in this manual refer to the device the SELV voltage of which is not grounded.

The connection terminals may only be supplied with the signals indicated in the technical data and/or on the device label and only the approved accessories of ifm electronic gmbH may be connected.

In case of malfunctions or uncertainties please contact the manufacturer.

Tampering with the device can lead to serious risks for the safety of persons and plant. It is not permitted and leads to the exclusion of any liability and warranty claims.
2 Functions and features

The Ethernet camera serves for monitoring of areas outside of the field of view in mobile vehicles and utility vehicles. Connection, control and visualisation of the images is carried out via the process and dialogue module PDM360 with colour display.

The camera operates as a server and permanently transmits images to the connected dialogue module.

Applications are for example:

- Rear area or blind spot monitoring for municipal vehicles
- Machine monitoring in construction machinery
- Rear view camera on vehicles

2.1 Features at a glance

- Use and operation with process and dialogue module PDM360 (version with colour display, art. no. CR1051 from software version V4.3.2)
- Display of up to 4 camera images per PDM360
- 10 Mbits/s Ethernet interface (10Base-T/100Base-TX according to IEEE 802.3/802.3u)
- Sealed diecast zinc housing
- Protection rating IP 69 K
- Regulated lens heating (can be deactivated)
- CMOS image sensor, resolution ¼ VGA, 320 x 240 pixels
- Angle of aperture 75°
- Parameter setting and control functions via the CoDeSys application program, e.g.:
  - image mirror function (rear view mode)
  - rotating
  - parallel display of several camera images (split screen)
  - positioning of the images
  - activation/deactivation
  - debug mode (adjustable use of the band width of the network)
- Operation display via integrated LED
- Mixed display of camera image and PDM360 visualisation elements (text and/or graphics)
3 Mounting

3.1 Mounting accessories
The device is supplied without mounting accessories. Depending on the intended location and type of mounting the following mounting accessories are available, for example:

<table>
<thead>
<tr>
<th>Mounting accessories (examples):</th>
<th>Art. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting set for shaft Ø 12 mm (clamp cylinder and fixing element for the types O2D, O2M)</td>
<td>E2D110</td>
</tr>
<tr>
<td>Shaft, straight Ø 12 mm, length 130 mm, M10</td>
<td>E20938</td>
</tr>
<tr>
<td>Shaft, angled Ø 12 mm, length 200 mm, M10</td>
<td>E20940</td>
</tr>
<tr>
<td>Mounting set for shaft Ø 14 mm (clamp cylinder and fixing element for the types O2D, O2M)</td>
<td>E2D112</td>
</tr>
<tr>
<td>Shaft, straight Ø 14 mm, length 130 mm, M12</td>
<td>E20939</td>
</tr>
<tr>
<td>Shaft, angled Ø 14 mm, length 200 mm, M12</td>
<td>E20941</td>
</tr>
</tbody>
</table>

Mounting accessories (example)

Mounting set for shaft Ø 12 mm
art. no. E2D110
Shaft, straight Ø 12 mm
E20938

Mounting example

You can find more information about the available accessories at:

www.ifm-electronic.com ➔ Data sheet direct ➔ e.g. O2M110 ➔ Accessories

or directly

www.ifm-electronic.com ➔ Data sheet direct ➔ e.g. E2D110

3.2 Mounting dimensions
Mounting is done using two M 4 x L screws.
Mounting dimensions of the camera ➔ 7 Technical data (data sheets).
3.3 Mounting location

Mount the camera in front of or above the area to be monitored. The size of the area to be monitored depends on the operating distance:

![Diagram showing operating distance and field of view size (example O2M110)]

Operating distance and field of view size (example O2M110)

Device-specific data → 7 Technical data (data sheets).

Note in general

To avoid adverse effects on the image detection, avoid installation in heavily polluting areas of the machine (e.g. splashing water, tyre abrasion, etc.).

Avoid back light.
Do not position lighting elements directly facing the camera lens.
Mount the device in such a way that the cables/connectors are connected from below.
The connected cables must be provided with a strain relief.
4 Electrical connection

4.1 Ethernet camera

For information about available connectors please go to:

[www.ifm-electronic.com](http://www.ifm-electronic.com) → Data sheet direct → e.g. O2M110 → Accessories

The supply voltage is electrically separated from the housing.

### 4.1.1 Ethernet connection

Use a shielded CAT5 cable.
(STP, Shielded Twisted Pair, according to EIA/TIA-568). Max. length 100 m

Use screened connector housings.
Connect the screen of the Ethernet cable to the connector housing.

Avoid transmission problems caused by induction.
Do not lay the Ethernet connection cable in parallel to current-carrying cables.
Lay supply and signal cables away from the camera using the shortest possible route.

### 4.1.2 Interference due to external influences

Faulty or insufficient radio interference suppressors in electrical equipment, such as inverters or generators, as well as voltage fluctuations when switching on/off electric loads may lead to problems with the image transmission.
4.2 PDM360

The Ethernet service interface behind the side cover is not intended for actual operation.

---

**M23 round connector**

<table>
<thead>
<tr>
<th>Pin</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND (Power)</td>
</tr>
<tr>
<td>2</td>
<td>GND (Power)</td>
</tr>
<tr>
<td>3</td>
<td>VBB + (Supply)</td>
</tr>
<tr>
<td>4</td>
<td>CAN 1 Low</td>
</tr>
<tr>
<td>5</td>
<td>CAN 1 High</td>
</tr>
<tr>
<td>6</td>
<td>n.c.</td>
</tr>
<tr>
<td>7</td>
<td>2nd RS 232, RxD</td>
</tr>
<tr>
<td>8</td>
<td>2nd RS 232, TxD</td>
</tr>
<tr>
<td>9</td>
<td>VBB + (supply switched)</td>
</tr>
<tr>
<td>10</td>
<td>GND (Power)</td>
</tr>
<tr>
<td>11</td>
<td>GND (Power)</td>
</tr>
<tr>
<td>12</td>
<td>n.c.</td>
</tr>
<tr>
<td>13</td>
<td>CAN 2 Low</td>
</tr>
<tr>
<td>14</td>
<td>CAN 2 High</td>
</tr>
<tr>
<td>15</td>
<td>Ethernet RxD –</td>
</tr>
<tr>
<td>16</td>
<td>Ethernet RxD +</td>
</tr>
<tr>
<td>17</td>
<td>Ethernet TxD –</td>
</tr>
<tr>
<td>18</td>
<td>Ethernet TxD +</td>
</tr>
<tr>
<td>19</td>
<td>Shield</td>
</tr>
</tbody>
</table>

---

**RJ45**

<table>
<thead>
<tr>
<th>Pin</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TxD + pair 1</td>
</tr>
<tr>
<td>2</td>
<td>TxD – ”</td>
</tr>
<tr>
<td>3</td>
<td>RxD + pair 2</td>
</tr>
<tr>
<td>6</td>
<td>RxD – ”</td>
</tr>
</tbody>
</table>

---

The Ethernet service interface behind the side cover is not intended for actual operation.
4.3 PC/notebook

Connection to a PC or to a notebook may be necessary for service purposes (e.g. setting of the IP address).

The configuration of the PC Ethernet interface corresponds to that of the service interface (B) of the PDM360.

<table>
<thead>
<tr>
<th>RJ45</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TxD + pair 1</td>
</tr>
<tr>
<td>2</td>
<td>TxD - &quot;</td>
</tr>
<tr>
<td>3</td>
<td>RxD + pair 2</td>
</tr>
<tr>
<td>6</td>
<td>RxD - &quot;</td>
</tr>
</tbody>
</table>

Note:
The IP address range (Net ID) of the PC must correspond to the IP address range of the camera. For the PC/notebook setting is carried out in the Control Panel → Network Connections → Properties (also see → 6.1.2 IP address allocation Ethernet cameras).
4.4 Connection principle without hub/switch

- One camera at one PDM360
- One camera at one PC/notebook (e.g. service mode)

Crosslink cable principle

**Crosslink cable** (example):
- Ethernet connection cable, 2m
- M12 connector (4-pole, D-coded) – RJ45 (8-pole)

For further information about the connector go to:
4.5 Connection principle with hub/switch

- Several cameras at one PDM360

Adhere to the documentation of the switch manufacturer. Some switches have an “autocrossing” function. The transmit and receive wires are automatically recognised by these devices. In this case, 1:1 patch cables are not compulsory.
5 Operation display

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>supply voltage ok</td>
</tr>
<tr>
<td></td>
<td>camera ready for operation</td>
</tr>
<tr>
<td>OFF</td>
<td>no supply voltage</td>
</tr>
<tr>
<td></td>
<td>power supply interrupted</td>
</tr>
</tbody>
</table>

Operating indication O2M110/111
6 Set-up

6.1 IP addresses

The address ranges of all network participants must be identical. This range of the IP address is also called Net ID.

Factory preset (subnet mask 255.255.255.0, class C):

Ethernet camera: \[192.168.82.15\]
general ... \[\downarrow = \downarrow = \downarrow = \downarrow \neq\]
PDM360: \[192.168.82.247\]

\[\downarrow \text{.... Net ID .....} / \ \text{Host ID}\]

6.1.1 IP address allocation PDM360

For PDM360, the IP address is set via the PDM setup. Open the PDM setup start menu:
Press F1 and F5 simultaneously and switch on the voltage supply.
Select “IP address” by turning and then pressing the rotary switch. Set the IP address range in the menu “Setup Server IP”.

PC/notebook only for parameter setting
PDM360 online help:
The online description of the functions, operation and device-specific libraries of
the PDM360 family is part of the CoDeSys online help.
It is also available for download on the internet.

www.ifm-electronic.com ➔ Data sheet direct ➔ e.g. O2M110 ➔ Download/Software

6.1.2 IP address allocation cameras

Example 2: IP address allocation when using 4 cameras

When using several cameras, set the IP addresses of the cameras via the
“Hypertext Transfer Protocol” (HTTP). To do so, use standard programs such as
Microsoft Internet Explorer, Mozilla Firefox or Opera.

Procedure:
1. Check the IP settings of the PC/notebook and change them if necessary.
   (Start → Control Panel → Network Connections → Local Area Connection)
   Internet protocol: TCP/IP
   IP address: 192.168.82.xx (except 15)
   Subnet mask: 255.255.255.0
   Connection: 10 MBits, half-duplex
   Gateway IP address: 192.168.82.15
2. Establish an Ethernet connection between the camera and the PC/notebook.
3. Connect the camera to supply voltage.
   Do not interrupt the supply voltage during IP address allocation!
   Avoid voltage fluctuations during IP address allocation!
4. Open the internet browser.
5. Enter the preset IP address of the camera in the address line of the browser
   and confirm with “Enter” (http://192.168.82.15/).
   The start window “O2M1xxx WebConfig” appears in the browser.
6. Click on “Change IP address”.

Start window “O2M1xx WebConfig”

7. Enter the new address in the field “IP address” and click on “Submit” to send it to the camera.

O2M1xx IP configuration
A confirmation appears if the address was successfully written to the flash memory of the camera.

**O2M1xx IP Configuration**

IP Address

192.168.82.17

Submit

Changes saved and will be activated at restart.

Reboot

Back

Confirmation of the address change

**O2M1xx IP Configuration**

IP Address

192.168.82.19

Submit

Back

Error message in case of invalid IP address (e.g. wrong address range)
An inadvertent, wrong address allocation makes subsequent communication with the camera impossible. For this reason, the following final test must be carried out.

8. Click on “Reboot”.

9. Enter the new IP address of the camera in the address line of the browser and confirm with “Enter” (here e.g.: http://192.168.82.17/).

If the address corresponds to the previously allocated address, the start window “O2M1xxx WebConfig” appears again.

10. Repeat the steps 2 to 9 with further cameras.

The new camera IP address will become effective on reboot.
(camera supply voltage off/on).
6.2 Parameter setting PDM360

6.2.1 Library ifm_Camera_O2M_Vxxxxxx

The CoDeSys library “ifm_Camera_O2M_Vxxxxxx” is part of the CD-ROM “ecolog Software & Tools”. It contains all parameters and functions for the control of the dialogue module PDM360 (art. no. CR1051) and the camera. After installation of the CD, the library will be stored in the directory:

```plaintext
...\ifm electronic \ CoDeSys V2.3 \ Targets \ ifm \ Library \ ifm_CR1051
```

The library uses functions of the library “ifm_Camera_Vxxxxxx”. It is loaded automatically. “ifm_Camera_Vxxxxxx” must not be inserted.

2 demo programs in the directory “…\Projects \ DEMO_PDM” serve for introduction (CR1051Demo_O2M_1CAM.pro und CR1051Demo_O2M_2CAM.pro).

6.2.2 Function CAM_O2M

The function is part of the above-mentioned library. It serves for parameter setting / control of one camera and its image data. One function block is required per camera.

```plaintext
FUNCTION_BLOCK CAM_O2M

(* Function block to control cameras.*)

(*You use an instance of the function block to show the camera image.
Use an instance for every camera.*)

VAR_INPUT
C_ENABLE: BOOL; (* Enable the function block to work.*)
C_ADDR: STRING(15); (* Camera IP address as string e.g. 192.168.082.016*)
C_ROTATION: WORD; (* Rotate the camera source image.*)
C_MIRROR: BOOL; (* Mirror the camera source image at the vertical axis.*)
C_MODE: BYTE; (* Source area of the camera image.
1: full screen
2: part screen, visu active -> set size via C_WINDOW_HEIGHT,
30: quad screen up left, no visu
31: quad screen up left, visu active
```

Function block CAM_O2M (extract CoDeSys programming surface)
## 6.2.3 Parameter overview

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inputs</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| C_ENABLE     | BOOL        | camera ON/OFF  
TRUE: initialisation of the function, transmission of image data  
Note:  
If TRUE, the PDM360 visualisation is not refreshed |
| C_ADDR       | STRING (15) | IP address camera, factory setting: 192.168.82.15  
Note:  
If TRUE, the PDM360 visualisation is not refreshed |
| C_ROTATION   | WORD        | rotate image clockwise (values: 90/180/270)                                                                                                                                 |
| C_MIRROR     | BOOL        | image mirrored along the vertical axis  
TRUE: mirroring ON (rear view mode)                                                                                                                                 |
| C_MODE       | BYTE        | image position on PDM360 display  
1: full screen (320 x 240 px)  
2: part screen (320 x “H” px)  
Define “H” with C_WINDOWS_HEIGHT  
30: ¼ screen, at the top left  
no PDM360 visualisation  
31: ¼ screen, at the top left  
PDM360 visualisation at the bottom (height 120 px)  
40: ¼ screen, at the top right  
no PDM360 visualisation  
41: ¼ screen, at the top right  
PDM360 visualisation at the bottom (height 120 px)  
50: ¼ screen, at the bottom left  
no PDM360 visualisation  
51: ¼ screen, at the bottom left  
PDM360 visualisation at the top (height 120 px)  
60: ¼ screen, at the bottom right  
no PDM360 visualisation  
61: ¼ screen, at the bottom right  
PDM360 visualisation at the top (height 120 px)  
(¼ screen scales the image to 160 x 120 px) |
| C_WINDOWS_HEIGHT | BYTE   | visible height of the image data on the PDM360 display  
valid range: 120...240 px                                                                                                                        |
| C_DEBUG      | BOOL       | TRUE: greater bandwidth for CoDeSys programming or debugging  
(= lower transmission rate for image data)  
Factory setting: FALSE                                                                                                                               |
## Outputs

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_RESULT</td>
<td>BYTE</td>
<td>0: function not initialised or not active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1: function successfully initialised parameters successfully written</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2: function being processed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3: error; connection disturbed or interrupted parameter not written</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reinitialise function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97: check last byte of IP dress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>last byte of the IP address between camera and PDM has to be different</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98: PDM IP address and camera IP address are not in the same group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99: wrong IP address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>check format of the input string</td>
</tr>
<tr>
<td>PDM_IP</td>
<td>STRING (15)</td>
<td>IP address of the connected PDM360</td>
</tr>
</tbody>
</table>
6.2.4 MODE combinations (1...4 cameras)

Full screen
1 camera active, no visualisation
C_MODE = 1
C_WINDOW_HEIGHT = not defined

Part screen
1 camera active, visualisation up to 120 px at the bottom
C_MODE = 2
C_WINDOW_HEIGHT = 120...240 px (height camera image)

¼ screen at the top left
1 camera active, visualisation 120 px at the bottom
C_MODE = 31
C_WINDOW_HEIGHT = not defined

¼ screen at the top right
1 camera active, visualisation 120 px at the bottom
C_MODE = 41
C_WINDOW_HEIGHT = not defined

¼ screen at the bottom left
1 camera active, visualisation 120 px at the top
C_MODE = 51
C_WINDOW_HEIGHT = not defined

¼ screen at the bottom right
1 camera active, visualisation 120 px at the top
C_MODE = 61
C_WINDOW_HEIGHT = not defined

¼ screen at the top left / top right
2 cameras active,
visualisation 120 px at the bottom, controlled by camera 1
Camera 1: C_MODE = 31
Camera 2: C_MODE = 40
C_WINDOW_HEIGHT = not defined (both cameras)

¼ screen at the bottom left / bottom right
2 cameras active,
visualisation 120 px at the top, controlled by camera 1
Camera 1: C_MODE = 51, at the bottom left
Camera 2: C_MODE = 60, at the bottom right
C_WINDOW_HEIGHT = not defined (both cameras)
1/4 screen at the top left / bottom left / bottom right
3 cameras active, no visualisation
Camera 1: C_MODE = 30, at the top left
Camera 2: C_MODE = 50, at the bottom left
Camera 3: C_MODE = 60, at the bottom right
C_WINDOW_HEIGHT = not defined (all cameras)

1/4 screen at the top right / bottom left / bottom right
3 cameras active, no visualisation
Camera 1: C_MODE = 40, at the top right
Camera 2: C_MODE = 50, at the bottom left
Camera 3: C_MODE = 60, at the bottom right
C_WINDOW_HEIGHT = not defined (all cameras)

1/4 screen at the top left / top right / bottom left / bottom right
4 cameras active, no visualisation
Camera 1: C_MODE = 30, at the top left
Camera 2: C_MODE = 40, at the top right
Camera 3: C_MODE = 50, at the bottom left
Camera 4: C_MODE = 60, at the bottom right
C_WINDOW_HEIGHT = not defined (all cameras)

Legend:

- Camera image
- Active PDM360 visualisation area (text and/or graphics)
- Note: activate visualisation only for one camera!
- Static background image
  (visualisation before activating one or several cameras)
7 Technical data

7.1 O2M110/111

O2M110/111

Ethernet camera

Angle of aperture 75°

Lens heating

<table>
<thead>
<tr>
<th>Electrical design</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating distance [m]</td>
<td>- 1 2 5 -</td>
</tr>
<tr>
<td>Field of view size [m]</td>
<td>- 1.5 x 1.1 3 x 2.2 7.5 x 5.5 -</td>
</tr>
<tr>
<td>Operating voltage [V]</td>
<td>8...32 DC</td>
</tr>
<tr>
<td>Power consumption [W]</td>
<td>typ. 4 (excl. lens heating)</td>
</tr>
<tr>
<td>Lens heating [W]</td>
<td>typ. 6</td>
</tr>
<tr>
<td>Type of sensor</td>
<td>CMOS image sensor colour, QVGA resolution 320 x 240</td>
</tr>
<tr>
<td>Image repetition rate [Hz]</td>
<td>min. 15</td>
</tr>
<tr>
<td>Protocol</td>
<td>CMOS image sensor colour, QVGA resolution 320 x 240</td>
</tr>
<tr>
<td>Data format</td>
<td>Image transmission via UDP/IP</td>
</tr>
<tr>
<td>Readiness for operation [LED]</td>
<td>green</td>
</tr>
<tr>
<td>Operating temperature [°C]</td>
<td>-30...75</td>
</tr>
<tr>
<td>Storage temperature [°C]</td>
<td>-40...85</td>
</tr>
<tr>
<td>Protection</td>
<td>IP 69K, III</td>
</tr>
<tr>
<td>Standards, tests</td>
<td>DIN EN 61326 / IEC 60255-5 / DIN EN 61373 cat. 1B / Automotive Directive 05/49/EC (e1)</td>
</tr>
<tr>
<td>Materials</td>
<td>housing: diecast zinc / coating: cathodic dip painting (KTL)</td>
</tr>
<tr>
<td></td>
<td>front lens: glass</td>
</tr>
<tr>
<td>Interface</td>
<td>Ethernet 10Base-T / 100Base-TX</td>
</tr>
<tr>
<td>Transmission rate</td>
<td>10 Mbits/s (fixed)</td>
</tr>
<tr>
<td>IP address (default)</td>
<td>192.168.82.15</td>
</tr>
<tr>
<td>Wiring</td>
<td>Power supply connection: M12, 4-pole</td>
</tr>
<tr>
<td></td>
<td>Parameter setting connection: M12, 4-pole, D-coded</td>
</tr>
<tr>
<td></td>
<td>1: U+ 2: not connected 3: 0 V 4: not connected</td>
</tr>
<tr>
<td></td>
<td>1: TD+ 2: RD+ 3: TD- 4: RD-</td>
</tr>
</tbody>
</table>

We reserve the right to make technical alterations without prior notice.
8 Maintenance, repair, disposal

Keep the lens window of the camera free from soiling. Soiling may considerably affect the image quality!

To clean the lens window, do not use any detergents or solvents which might damage the front glass.

Do not open the housing, as the device does not contain any components which must be maintained by the user. The unit may only be repaired by the manufacturer.

Dispose of the device in accordance with the national environmental regulations.

9 Approvals/standards

Test standards and provisions → 7 Technical data.

The CE Declaration of Conformity and the e1 approval are available at: www.ifm-electronic.com → Data sheet direct → e.g. O2M110 → Approvals