Programming guide
Configuration software for dualis Multicode Reader
O2I1xx
O2I3xx

efectorn190
E2I200
Version 1.4
Content

1 Preliminary note ..5
 1.1 Symbols used ..5

2 System requirements ..5
 2.1 PC hardware ..5
 2.2 PC software ..5
 2.3 Required accessories ...5
 2.4 Compatibility of configuration software and device firmware5
 2.5 Download configuration software and device firmware6

3 Functions and features ...6

4 Installation ...7
 4.1 Hardware ...7
 4.2 Software ...7
 4.3 Network settings ...8
 4.3.1 Factory setting multicode reader8
 4.3.2 Verify and set the IP address of the PC8
 4.3.3 Verify and set the IP address of the multicode reader9
 4.4 Establish the transmission of the process data10
 4.4.1 Factory setting multicode reader10
 4.4.2 Establish the RS-232 connection10
 4.4.3 Establish the TCP/IP connection11
 4.4.4 Establish the EtherNet/IP connection12

5 Basic functions of the program ...14
 5.1 Basics on the user interface ...14
 5.2 Program start ..15
 5.3 General settings ...16
 5.3.1 Languages ..16
 5.3.2 Colours ...16
 5.4 Connect device to the configuration software17
 5.4.1 Alternative 1: Bookmark entry17
 5.4.2 Alternative 2: Enter the reader IP address18
 5.4.3 Alternative 3: Find the reader IP address19
 5.4.4 The device is connected to configuration software21

6 Configuration mode ...22
 6.1 General ...22
 6.2 Activate configuration mode ...23
 6.3 Handling the configurations and groups25
 6.3.1 Configuration outside a group25
 6.3.2 Configuration within a group26
 6.3.3 Call configuration information27
 6.4 General device management ..27
 6.5 Global device settings ..28
 6.5.1 Global settings ..28
 6.5.2 Process interface ..29
 6.5.3 Network parameters ...30
 6.6 Uploading/downloading an available configuration31
 6.6.1 Copying the configuration from the hard disk to the multicode reader 31
 6.6.2 Copying the configuration from the multicode reader to the hard disk 32
 6.7 Password protection ..33
 6.8 Update device firmware ..34
 6.9 Create a new configuration ...35

7 Image quality / Trigger configuration36
 7.1 Image quality ..36
 7.2 Trigger configuration ..37

8 Configuration step "Define code"39
 8.1 Code recognition ..39
 8.1.1 Standard recognition and Extended recognition39

2
8.2 Text recognition (only O2I35x)

8.2.1 Stand-alone OCR ... 43
8.2.2 Code-based OCR ... 45
8.2.3 Extended settings ... 47

8.3 Preprocessing (filter functions) .. 49

9 Configuration step "Process interface"

9.1 Mode (process performance) ... 51
 9.1.1 Pattern recognition .. 52
 9.1.2 Regular expression .. 53
 9.1.3 Use code content as reference code 54
 9.1.4 Define character strings 55

9.2 Process data content .. 55

9.3 Code position .. 56

9.4 Transmit image ... 56

9.5 Code quality .. 57
 9.5.1 Evaluation of the code quality 57
 9.5.2 Code quality of 1D bar codes 60
 9.5.3 Evaluation of the code quality to SEMI T10 62

10 Configuration step "Overall function test"

10.1 Save the read result .. 66
10.2 Delete the read results ... 67

11 Service report mode .. 68

11.1 Evaluations .. 68
 11.1.1 Individual evaluations 68
 11.1.2 All evaluations ... 68

11.2 Save service report ... 69
11.3 Open service report .. 69

12 Exit the program ... 71

12.1 Disconnect .. 71
12.2 Close program ... 71

13 Process data protocol .. 72

13.1 Quick reference guide of the commands 72

14 Process data protocol .. 72

14.1 Quick reference guide of the commands 72

15 Global device settings ... 79

15.1 Send connect message ... 79
15.2 Protocol version V1 (standard) 79
14.3 Protocol version V2 (with ticket) ... 79
14.4 Protocol version V3 (with ticket and length of message) 79
14.5 Protocol version V4 (with length of message) ... 80
14.6 Standard result output ... 81
14.7 Result output with description ... 82
14.7.1 Example outputs ... 85
14.8 Error codes ... 89

15 History ... 90

Licences and trademarks
Microsoft®, Windows®, Windows XP® and Windows Vista® are registered trademarks of Microsoft Corporation. All trademarks and company names are subject to the copyright of the respective companies.

Open source software
This unit contains (maybe modified) open source software which is subject to special licensing terms. For copyright information and licensing terms please refer to: www.ifm.com/int/GNU
For software subject to the GNU General Public License or the GNU Lesser General Public License the source code can be requested against payment of the copying and shipping costs.
1 Preliminary note

1.1 Symbols used

► Instructions
> Reaction, result
[...] Designation of keys, buttons or indications
→ Cross-reference

Important note
Non-compliance may result in malfunction or interference.

Information
Supplementary note

2 System requirements

2.1 PC hardware

– PC with Pentium III processor or higher, clock frequency min. 500 MHz
– min. 128 MB RAM
– min. 35 MB freely available hard disc memory
– CD-ROM drive
– XGA compatible graphic card with min. 1024 x 768 pixel resolution
– Ethernet network card for 10Base-T/100Base-TX, TCP/IP protocol

2.2 PC software

– Operating system Microsoft Windows 2000, XP, Vista or Windows 7.

2.3 Required accessories

– Crossover cable for parameter setting connection (Ethernet), M12 connector/RJ45 connector, 4 poles, e.g. art. no.: E11898 (2 m)
– Connection cable for supply voltage and process connection, M12 socket, 8 poles, e.g. art. no. E11231 (2 m, wirable cable end)

You can find more information about the available accessories at:
www.ifm.com → Data sheet search → e.g. O2I102 → Accessories

2.4 Compatibility of configuration software and device firmware

<table>
<thead>
<tr>
<th>Published firmware versions (as in 06/2015)</th>
<th>3025</th>
<th>3026</th>
<th>3027</th>
<th>3028</th>
<th>3029</th>
<th>3031</th>
<th>3051</th>
<th>3052</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC operating program V1.0</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PC operating program V1.1</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PC operating program V1.2</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>PC operating program V1.3</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PC operating program V1.4</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

● = compatible / − = not compatible, i.e. update the device firmware or use compatible configuration software version
Published firmware versions (as in 06/2015)

<table>
<thead>
<tr>
<th></th>
<th>3072</th>
<th>3074</th>
<th>3075</th>
<th>3076</th>
<th>3078</th>
<th>3080</th>
<th>80xx</th>
<th>81xx</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC operating program V1.0</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PC operating program V1.1</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PC operating program V1.2</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PC operating program V1.3</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>PC operating program V1.4</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

● = compatible / − = not compatible, i.e. update the device firmware or use compatible configuration software version

2.5 Download configuration software and device firmware

The latest configuration software and device firmware can be downloaded from:

www.ifm.com

▶ Note the hints in the download area concerning the current versions.

(→ 6.8 Update device firmware)

3 Functions and features

In conjunction with an O2I multicode reader the In conjunction with efector pmd2d the PC operating program provides the following: provides the following options:

- Create, administer, name and/or group application-specific configurations
- Real-time monitor mode for set-up and service purposes
- Save service reports for statistical evaluations.
4 Installation

Installation and setting for operation with a fixed assigned IP address are described below (= direct connection to the PC).
This is the factory-preset operating mode of the multicode reader.
The figures and texts show the installation process under Windows 7.

4.1 Hardware
► Connect the device to the Ethernet interface of the PC using a crossover cable.
► Select the type of process data transfer to the PC:
 – TCP/IP:
 Ethernet connection is used. No other connection is required.
 – Serial:
 Connect the RS-232 interface of the reader with the RS-232 interface of the PC.
► Supply the device via the process connection.
 Wiring → type label, O2I data sheet or operating instructions

4.2 Software
► Insert the CD in the drive.
 > The start menu opens.
► Select the menu item "Start efector dualis".
 > The program starts.

If the autostart function for CD drives is deactivated and the start menu does not open automatically:
 ► Start the "O2IStart.exe" file in the main directory of the CD with a double click.
 > The start menu opens.
 ► Select the menu item "Start efector dualis".
 > The program starts.
4.3 Network settings

The IP address range of the device and the PC have to match.

<table>
<thead>
<tr>
<th>IP address range</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2I multicode reader</td>
<td>192.168.0.79</td>
</tr>
<tr>
<td>PC</td>
<td>192.168.0.xx</td>
</tr>
</tbody>
</table>

4.3.1 Factory setting multicode reader

<table>
<thead>
<tr>
<th>O2I multicode reader Parameters</th>
<th>Description</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
<td>Off</td>
</tr>
<tr>
<td>IP</td>
<td>IP address</td>
<td>192.168.0.79</td>
</tr>
<tr>
<td>nETm</td>
<td>Subnet mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>GWIP</td>
<td>Gateway address</td>
<td>192.168.0.201</td>
</tr>
</tbody>
</table>

4.3.2 Verify and set the IP address of the PC

- Select the menu item "Use the following IP address".
- Verify and set the IP address, if necessary (here e.g. 192.168.0.10).
- Enter the subnet mask (255.255.255.0).
- Leave default gateway blank.
- Confirm the settings with [OK].

Changes in the network settings of the PC require extended user rights. Contact your system administrator.
4.3.3 Verify and set the IP address of the multicode reader

- Select the parameter "IP" (IP address) with [MODE/ENTER] and [SET].
- The IP address is processed automatically and shown in 4 groups (A, B, C, D)
- Verify the IP address and set with [SET], if necessary.

Parameter description → "dualis Multicode Reader O2I" operating instructions
4.4 Establish the transmission of the process data

The process interface ensures communication between the process PC (e.g. PLC) and the device. A command from the processor can, for example, activate trigger pulses, request read results or activate configurations/groups.

The process data can be displayed via a terminal program, below described using the example "HyperTerminal".

4.4.1 Factory setting multicode reader

<table>
<thead>
<tr>
<th>O2I multicode reader</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process data transmission</td>
<td>RS-232 (serial)</td>
</tr>
<tr>
<td>Baud rate</td>
<td>9,600 baud</td>
</tr>
<tr>
<td>Data bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>none</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1</td>
</tr>
<tr>
<td>Flow control</td>
<td>none</td>
</tr>
</tbody>
</table>

RS-232 or TCP/IP can be selected in the PC operating program at "Global device settings" (→ 6.5 Global device settings).

4.4.2 Establish the RS-232 connection

➤ Start HyperTerminal.
 The program can be accessed for example via: Start → All programs → Accessories → Communication.

➤ Assign a symbol and a name for the connection (here e.g. multicode reader RS-232).

➤ Select connection "COM" (here for example COM1).

➤ Apply the parameters of the device (→ 4.4.1 Factory setting multicode reader).

► Click on [Apply] and close window with [OK].

➤ Connection is established and the terminal window opens.
4.4.3 Establish the TCP/IP connection

► Start HyperTerminal.
 The program can be accessed for example via: Start → All programs → Accessories → Communication.

► Assign a symbol and a name for the connection (here e.g. Multicode Reader TCP/IP).

► Select connection TCP/IP.

► Enter the host address.
 (Corresponds to the IP address of the device, here the factory setting 192.168.0.79)

► Enter the connection number.
 (Corresponds to the TCP/IP port number of the device, here the factory setting 50003)

► Close window with [OK].

> Connection is established and the terminal window opens.

Example:

```
IfW ELECTRONIC 021000K MultiCode Reader My loca(i(ion 192 168
0 79 255.255.255.0 192.168.0.201 00:02:01:21:66:80 0 08080
```

Process data protocol (→ 14)
4.4.4 Establish the EtherNet/IP connection

General information about EtherNet/IP

The Ethernet Industrial Protocol (EtherNet/IP) is an open standard for industrial networks. EtherNet/IP serves for the transmission of cyclic I/O data as well as acyclic parameter data. EtherNet/IP provides a broad basis for effective data communication in the industry. EtherNet/IP extends Ethernet by a modern industrial protocol (CIP, Common Industrial Protocol) as an application layer for applications in automation.

Settings

The multicode reader is an Ethernet/IP adapter device and supports the communication with a device configured as an EtherNet IP scanner. This is usually the processor (e.g. PLC).

Communication can be effected with explicit messages class3 via TCP/IP or implicit messages class1 via UDP/IP.

Communication is carried out using 2 EtherNet/IP assemblies; one for data transport from the controller to the sensor ("output assembly instance", ID address 100 / 0x64) and one for data transport from the sensor to the controller ("input assembly instance", ID address 101 / 0x65). The same lengths of the assemblies must be set in the sensor and the controller.

► Click on [Global device settings …] (∆ 6.5 Global device settings).
► Select [Process interface], then "EtherNet/IP" in the pulldown menu.
► Click on [Extended settings…] and enter the parameters for EtherNet/IP.

Structure of the assembly in case of deactivated segmentation

The "input assembly instance" (101) is 450 bytes long and consists of 3 segments:

<table>
<thead>
<tr>
<th>Segment</th>
<th>Offset</th>
<th>Length</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment 1</td>
<td>0</td>
<td>215 bytes</td>
<td>Reply to the incoming messages</td>
</tr>
<tr>
<td>Segment 2</td>
<td>215</td>
<td>215 bytes</td>
<td>Result of the code evaluations</td>
</tr>
<tr>
<td>Segment 3</td>
<td>430</td>
<td>20 bytes</td>
<td>Fixed device and result information</td>
</tr>
</tbody>
</table>

The last byte of each segment serves as control byte which is incremented during processing by the multicode reader. With identical code content these control bytes are used for distinguishing the input data.
Segmentation

The "input assembly instance" can be segmented in order to save memory space. This way, only the data which is actually required for the application is transmitted. For each segment, an "Offset" and the required "Length" can be selected from the segment selection list.

The predefined "input assembly instance" segmentation can be reconfigured using the segmentation table. The segmentation table provides a new order of the bytes for the "input assembly instance". A segment is defined by its index, a number of bytes (segment length) and a byte address from the predefined "input assembly instance" (segment offset).

The "input assembly instance" is restructured on this basis. The segment index defines the order of assignment. The number of assigned bytes is defined by the segment length and the segment offset points to the address from the predefined "input assembly instance" from which the bytes are extracted.

The last byte of each segment can be activated as control byte. It is incremented during processing by the multicode reader. With identical code content these control bytes are used for distinguishing the input data. The control byte can be activated or deactivated by clicking onto the respective field.

Segmentation example 1:

<table>
<thead>
<tr>
<th>Index</th>
<th>Offset</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>450 bytes</td>
</tr>
</tbody>
</table>

Explanation:
Default segmentation table. Takes 450 bytes (all!) from the predefined "input assembly instance" and positions these on the address 0. Therefore, this segmentation table has no actual influence on the "input assembly instance".

Segmentation example 2:

<table>
<thead>
<tr>
<th>Index</th>
<th>Offset</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>215</td>
<td>215 bytes</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>215 bytes</td>
</tr>
<tr>
<td>3</td>
<td>430</td>
<td>20 bytes</td>
</tr>
</tbody>
</table>

Explanation:
Segments 1 and 2 from the predefined "input assembly instance" are swapped: First, 215 bytes starting with byte address 215 from the predefined "input assembly instance" are repositioned. Then, 215 bytes starting with byte address 0 and then 20 bytes starting with byte address 430 from the predefined "input assembly instance".

In the "output assembly instance" messages are always written as from address 0; only the length can be determined. It must correspond to at least the length of the longest possible message (max. 450 bytes).

Data exchange via EtherNet/IP

The data exchange between a sensor with EtherNet/IP capacity and a PLC is carried out cyclically. This means that the data stored in the sensor in the output assembly segment (ID 100) is retrieved from the connected PLC in each cycle and stored in the data area defined in the PLC.

If the data in the sensor changes, it will be adopted in the defined data area in the next cycle of the PLC and will be available until the sensor overwrites its output assembly area.

► Observe the current information in the ifm internet download area at www.ifm.com
5 Basic functions of the program

5.1 Basics on the user interface

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Display / operating elements</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mode</td>
<td>● Configuration
Create, manage or group configurations.
By changing into this mode, the device will stop the read mode.
● Monitor
Device will run independently with saved and activated group or configuration.
The read operation can be observed.
● Service report
By changing into this mode, the device will stop the read mode.
The results, statistics and captured images can be activated and/or saved.</td>
</tr>
<tr>
<td>2</td>
<td>Status bar</td>
<td>● Network status of the device (OFFLINE/ONLINE)
● Device name
● Article number/production status/firmware of the connected device
● Password protection on/off (lock symbol)
● Program status (current program function)</td>
</tr>
<tr>
<td>3</td>
<td>Toolbar</td>
<td>Buttons (e.g. "connect" or "disconnect")
Commands that cannot be selected are displayed in grey.</td>
</tr>
<tr>
<td>4</td>
<td>Menu strip</td>
<td>Pull-down menus with program functions.</td>
</tr>
<tr>
<td>5</td>
<td>Result field</td>
<td>● Reading result
e.g. number of found codes, code content, read time, total decoding time</td>
</tr>
<tr>
<td>A/B/C</td>
<td>Selection variants</td>
<td>Identical commands can be selected in different ways.
(depending on the program function).
A = selection via pulldown menu in the menu bar
B = selection via button
C = selection via context menu (click with right mouse button)</td>
</tr>
</tbody>
</table>
5.2 Program start

- Start configuration software "Dualis Multicode.exe".
 > The start screen displays the article number, program designation and version number for approx. 5 s.
 > The neutral user interface opens.

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Display / operating elements</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mode</td>
<td>No button activated</td>
</tr>
<tr>
<td>2</td>
<td>Status bar</td>
<td>Status: OFFLINE</td>
</tr>
<tr>
<td>3</td>
<td>Result field</td>
<td>Blank</td>
</tr>
<tr>
<td>4</td>
<td>Monitor field</td>
<td>Blank</td>
</tr>
</tbody>
</table>
5.3 General settings

5.3.1 Languages

► Select [Settings] → [Language] in the menu bar.

The selection of a language is possible in any mode. A restart of the program is not required.

5.3.2 Colours

The colours for the search zone and the image field texts can be set.

The colour settings are used for the illustration and storage of the evaluation and service images (→ 12 Service report mode)

► Select [Settings] → [Colours...] in the menu bar.
► Change the colour settings in the sub-menu and confirm with [OK].

Colour settings to be made in the configuration step "Define code" (→ 8).
In this configuration step the changes can be seen at once.
5.4 Connect device to the configuration software

5.4.1 Alternative 1: Bookmark entry
► Select [Connections] → [IP address ...] in the menu bar.

> User interface changes to the connection settings.
> "Saved bookmarks" contains a bookmark entry with the factory settings of the device.
(If this is not the case, continue with 5.4.2 or 5.4.3)
► Activate the bookmark entry by clicking once and then click on [Connect].
 Alternatively: Double-click on the entry.

> Change of status: OFFLINE → ONLINE
 (→ 5.4.4 The device is connected to configuration software)
5.4.2 Alternative 2: Enter the reader IP address.

► Select [Connections] → [IP address ...] in the menu bar.

► Enter the IP address of the device in the input mask "IP address".

► Apply preset port number 8080.

⚠ If a firewall is active on the PC, ensure that this port and the port number 50002 have been enabled for image transmission.

► Click on [Connect].

> Change of status: OFFLINE → ONLINE

(→ 5.4.4 The device is connected to configuration software)
5.4.3 Alternative 3: Find the reader IP address.

► Select [Connections] → [IP address ...] in the menu bar.

► Click on [Find device ...].
 > The window "Find sensors" opens.

► Enter the IP address range at "Network address", here e.g. 192.168.0.0.
► Enter the "Subnet mask", here e.g. 255.255.255.0.
► Click on [Add].
 > The network address is added to the search list.
 > Input fields for the network address and subnet mask are blank so that other entries can be made in the search list.
► Click on [Start search].

> The devices found are listed in the "Device detection" box.

> All network data necessary for the connection to the device is saved locally on the PC in a bookmark entry with the indicated device name and its location.

► Single-click on the entry in the search list and then on [Connect]. Alternatively: Double-click on the entry in the search list.

> Change of status: OFFLINE → ONLINE

(→ 5.4.4 The device is connected to configuration software)
5.4.4 The device is connected to configuration software

Once the sensor is connected, 2 cases have to be distinguished.

1. Device as supplied:
 No configuration file saved on the device.
 > The user interface changes to the configuration mode (→ 6).
 [Configurations] button is activated.
 Configurations can be created and managed.
 Global device settings are possible.

2. Device has already been configured:
 Active configuration file saved on the device:
 > The user interface changes to the monitor mode (→ 11)
 The [Monitor] button is activated. After a trigger pulse the monitor window displays the current image captured by the device.
 The result field on the right displays the current results.

Establishing the connection may take several seconds.
6 Configuration mode

6.1 General

The device can store up to 32 configuration files (= parameter sets). A configuration contains all application-relevant parameters allowing the device to execute the read mode independently.

For creating a configuration the user is guided via a predefined navigation. The following settings and parameters are defined step by step:

1. **Image quality / Trigger configuration**
 - Internal/external illumination
 - Exposure time, parameters for the image quality, trigger type, trigger window, etc.

2. **Define code and text**
 - **Code**
 - Code definitions, code recognition criteria, filter functions for the image pre-processing, code-specific optimisation parameters, etc.
 - **Text (only O2I35x)**
 - Code and text definitions, text parameters, filter functions for image preprocessing, etc.

3. **Process interface**
 - Information about the process data, distinction between read operation/comparison/pattern recognition, character strings, etc.

4. **Overall function test**
 - Final function test with the defined specifications

When a configuration is newly created, the next step can only be selected with [Next], if the parameters of the current step have been defined.

When an existing configuration is edited, any sequence of the steps is possible.
Access to this mode can be locked by means of a password. (→ 6.7 Password protection)

6.2 Activate configuration mode

► Click on [Configurations].
► Acknowledge warning with [OK].

► If the device is password protected, enter the password and confirm it with [OK].

Password protection (→ 6.7)

> The user interface changes to the Configurations mode.
<table>
<thead>
<tr>
<th>Pos.</th>
<th>Display / operating elements</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Management of the configurations and groups</td>
<td></td>
</tr>
</tbody>
</table>
| | New | Creates a new configuration (→ 6.9)
| | Activate | Activates a group
| | Edit | Settings of a configuration can be changed or verified.
| | | ● Image quality / Trigger configuration
| | | ● Define code
| | | ● Process interface
| | | ● Overall function test
| | Trigger master | Configuration becomes specification for triggering in a group (→ 6.3.2)
| | Capture master | Configuration becomes specification for image captures in a group (→ 6.3.2)
| | Upload from device | Save configuration on the hard disk (→ 6.6.2)
| | Download to device | Save configuration from the hard disk to the device (→ 6.6.1)
| | Cut | Copy configuration to clipboard and delete it from the directory structure
| | Copy | Copy configuration to clipboard
| | Paste | Paste the configuration from the clipboard to a group or append it to the directory structure
| | Delete | Delete the configuration
| | Rename | Rename configuration
| | Info | Call configuration information (→ 6.3.3)
| 2 | Directory of the configurations and groups | Overview, structure and selection of the configurations and groups
| 3 | General device management | Device-specific information
| 4 | Global device settings.... | Possible basic settings of the performance and network parameters of the device.
| | | ● Trigger input debouncing (on/off)
| | | ● Laser marking (on/off)
| | | ● Process interface (RS-232, TCP/IP or EtherNet/IP)
| | | ● Network parameters (DHCP on/off, IP address etc.)
| 5 | Save bookmark data | Saves the entered "Global connection data" (item 4) to the device |
6.3 Handling the configurations and groups

Handling and selection of Groups or Configurations is identical to the file management used by Windows explorer.

A single click with the left mouse button activates a configuration or a group; a single click with the right mouse button opens the context menu.

The configuration symbols can be moved into one of the 8 defined groups via drag and drop. The abbreviation "GP" for a group and the group numbers 01...08 are preset and cannot be changed.

A total of 32 configurations can be saved in one device.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
</table>
| ![Device symbol](symbol.png) | Device symbol
Can be compared with a main directory in the directory structure of the Windows Explorer. |
| ![Group symbol](symbol.png) | Group
Can be compared with a subdirectory in the directory structure of the Windows Explorer. |
| ![Active group symbol](symbol.png) | Active group
The device executes the configurations in this group in the read operation.
With a trigger signal all configurations of the group are tried one after the other until there is a good reading. If there is no good reading for any of the contained configurations, the result is a bad reading.
(Note → 6.3.2 Configuration within in a group) |
| ![Configuration (general) symbol](symbol.png) | Configuration (general)
Can be compared with a file in the directory structure of the Windows Explorer.
In the configuration all parameters of the respective setting are saved. |

6.3.1 Configuration outside a group

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
</table>
| ![Active configuration](symbol.png) | Active configuration, not assigned to any group
The device performs these configurations during the read operation. |
| ![Inactive configuration](symbol.png) | Inactive configuration |
6.3.2 Configuration within in a group

When a reading process starts, all configurations within the group are executed consecutively until there is a good reading. If there is no good reading for any of the contained configurations, the result is a bad reading.

During the next reading process the configuration that delivered the last good reading is started.

This function can, for example, be used if different code types are to be recognised with the same code reader or if different image settings are necessary for different readings.

The group function ensures operation with different configurations without having to change the active configuration manually.

A configuration defining the trigger settings has to be within a group (either trigger specification "T" or combination trigger/image capture specification "A").

In addition, another or the same configuration can include the specifications for the image capture (image capture specification "C" or combination trigger/image capture specification "A").

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
</table>
| ![Symbol](icon.png) | Trigger specification in a group
This configuration defines the trigger settings for the group (trigger type, trigger window, number of tried reads, time window) |
| ![Symbol](icon.png) | Image capture specification in a group
This configuration defines the settings for the image quality for a group (type of lighting, number of lighting segments, exposure time, etc.) |
| ![Symbol](icon.png) | Trigger/image capture specification for the group combined in one configuration. |
| ![Symbol](icon.png) | Configuration without trigger/image capture specification |

- Operation group without image capture specification (groups only with ![Symbol](icon.png)):
 As each configuration is tried, a new image is taken with the respective settings.
- Operation group with image capture specification (groups with ![Symbol](icon.png) or ![Symbol](icon.png)):
 Only one image is taken with the settings of the image capture specification.
6.3.3 Call configuration information
► Select a configuration with the right mouse button.
> The context menu opens.
► Select [Info].

6.4 General device management
► Enter the name and the location according to the application.
► Transfer the entries to the device with [Assign].

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device name</td>
<td>Any application-specific device name</td>
</tr>
<tr>
<td>Device location</td>
<td>Location description (e.g. conveyor belt 12)</td>
</tr>
<tr>
<td>Firmware version</td>
<td>Firmware version of the device (cannot be changed)</td>
</tr>
</tbody>
</table>
6.5 Global device settings

► Click on [Global device settings …].

6.5.1 Global settings

► Check the entries in the dialogue window "Global device settings" and change them, if necessary.

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger input debouncing</td>
<td>Prevents that several pulses occurring shortly after each other cause a trigger process on the device. With "On" a stable pulse has to be on the input for at least 3 ms so that it is recognised as a trigger pulse. Shorter pulses are ignored.</td>
</tr>
<tr>
<td>Laser pointer</td>
<td>Laser marking (laser pointer) on/off</td>
</tr>
<tr>
<td></td>
<td>The laser marking serves as alignment aid and is parallel to the optical axis. It is located approx. 2 cm above the middle of the field of view.</td>
</tr>
<tr>
<td>Fail results to save</td>
<td>Ratio of stored error images and total number of images</td>
</tr>
</tbody>
</table>
6.5.2 Process interface
► Check the entries in the dialogue window "Process interface" and change them, if necessary.

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection of the process interface</td>
<td>Defined transmission standard</td>
</tr>
<tr>
<td></td>
<td>● TCP/IP</td>
</tr>
<tr>
<td></td>
<td>● Serial</td>
</tr>
<tr>
<td></td>
<td>● EtherNet/IP</td>
</tr>
<tr>
<td>Protocol version</td>
<td>Defines the characteristics of the process data transmission</td>
</tr>
<tr>
<td></td>
<td>● V1 (standard)</td>
</tr>
<tr>
<td></td>
<td>Messages/replies without ticket and without message length</td>
</tr>
<tr>
<td></td>
<td>● V2 (with ticket)</td>
</tr>
<tr>
<td></td>
<td>The messages to the device are preceded by a 4-digit decimal number as ticket.</td>
</tr>
<tr>
<td></td>
<td>The reply by the device starts with the same number.</td>
</tr>
<tr>
<td></td>
<td>Messages and replies are then linked.</td>
</tr>
<tr>
<td></td>
<td>● V3 (with ticket and message length)</td>
</tr>
<tr>
<td></td>
<td>The messages to the device and the replies by the device are preceded by length information and a ticket.</td>
</tr>
<tr>
<td></td>
<td>● V4 (with message length)</td>
</tr>
<tr>
<td></td>
<td>The replies by the device are preceded by length information, the messages to the device, however, are not.</td>
</tr>
<tr>
<td></td>
<td>Process data protocol (→ 14)</td>
</tr>
<tr>
<td>Send connect message</td>
<td>If this field is activated, the device will automatically output a message when the connection is established again.</td>
</tr>
<tr>
<td></td>
<td>Contents: IFM ELECTRONIC, article, device name, device location, IP address, subnet mask, gateway, MAC address, XML-RPC port</td>
</tr>
<tr>
<td></td>
<td>Process data protocol (→ 14)</td>
</tr>
<tr>
<td>Extended settings...</td>
<td>Interface-specific settings</td>
</tr>
<tr>
<td></td>
<td>e.g. TCP/IP port number, baud rate, stop bits, etc.</td>
</tr>
</tbody>
</table>
6.5.3 Network parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>In the DHCP mode the input fields for the IP address, the subnet mask and the standard gateway are blocked. The reader is assigned an address in the network by a DHCP server. Please note the warning when you switch to "On"!</td>
</tr>
<tr>
<td>IP address</td>
<td>Currently assigned IP address of the device</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>Currently assigned subnet mask of the device</td>
</tr>
<tr>
<td>Gateway</td>
<td>Default gateway address</td>
</tr>
<tr>
<td>XML-RPC port</td>
<td>Port number for the communication via the XML-RPC protocol (Remote Procedure Call)</td>
</tr>
<tr>
<td>Video port</td>
<td>Port number for the transmission of images</td>
</tr>
<tr>
<td>MAC address</td>
<td>The MAC address of the device (cannot be changed)</td>
</tr>
</tbody>
</table>
6.6 Uploading/downloading an available configuration

6.6.1 Copying the configuration from the hard disk to the multicode reader

► Select the name/location of the device in the directory structure by clicking on it once.
 If the configuration is to be assigned to a group, click on this group once.

► Click on [Download to device].
 Alternatively: Selection via the context menu (right mouse button) or via the tool bar.

► Assign a number and a name to the new configuration.
 Required information:
 Length of the name 1..32 characters
 Umlauts allowed (Ä, ä etc.)
 No blank or tabulator characters before and after an entry
 No special characters (&, $, -, _, etc.)

The selection list only shows the free numbers to be assigned.
The number is required for activating and enquiring about a configuration via the process interface.
Process data protocol, e.g. permanently activate configuration/group (→ 14.4.4)

► Acknowledge with [OK].

► Define the memory location on the hard disk and select the file.

> The configuration is downloaded to the device and can be seen in the directory structure.
6.6.2 Copying the configuration from the multicode reader to the hard disk

► Select the configuration in the directory structure by clicking once.
► Click on [Upload from device]. Alternatively: Selection via the context menu (right mouse button) or via the tool bar →.

► Define the memory location on the hard disk and assign a file name.

► Acknowledge with [OK].

> The configuration is uploaded on the hard disk and can be copied to other devices, if required.
6.7 Password protection

Devices can be protected against manipulation using a password. To do so, the device has to be connected with the operating program (→ 5.4).

► In the menu bar, select [Settings] → [Password protection] → [Lock sensor].

► Enter the password and confirm it by entering it again.
► Select [Menu items to be protected] as required.

<table>
<thead>
<tr>
<th>Field</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service report menu</td>
<td>Access to the "Service report" mode is password protected. No read results (evaluations) stored in the device can be called and looked at, externally stored or deleted.</td>
</tr>
<tr>
<td>Administration menu</td>
<td>Access to the "Configurations" mode is password protected. No device settings and configurations can be newly created or changed.</td>
</tr>
<tr>
<td>Reset statistics to monitor mode</td>
<td>In the "Monitor" mode the read results (evaluations) stored in the device cannot be deleted.</td>
</tr>
</tbody>
</table>

> If the device is then connected with the operating program again, the password will be asked for when a protected menu item has been selected.

Irrespective of which menu items are protected, the password protection locks the operating keys of the device. Parameter values cannot be displayed and changed. "Lok1" is displayed on the device.
6.8 Update device firmware

► Select [File] → [Sensor firmware update ...] in the menu bar.

► Determine the storage location of the update file (.swu) and select it with [Open].

> The update process starts.

⚠️ The update takes some time.

Do not disconnect the device (power supply or coms) during the update.

The device firmware can be downloaded from:

www.ifm.com

Note the remarks concerning the respective firmware versions.
6.9 Create a new configuration

► Click on [New].

If the name/location of the device has been selected in the directory structure (= shown in blue), the new configuration is not assigned to any group and added at the end of the data structure.
If the new configuration is already to be assigned to a group, select this group with a single click. Then click on [New].

► Assign a number and a name to the new configuration.
Required information:
Length of the name 1-32 characters
Umlauts allowed (Ä, ä etc.) No blank or tabulator characters before and after an entry
No special characters (&, $, -, _, etc.)

The selection list only shows the free numbers to be assigned.
The number is required for activating and enquiring about a configuration via the process interface.
Process data protocol, e.g. permanently activate configuration/group (→ 14.4.4)

► Acknowledge with [OK].

> The new configuration is created.
> The user interface changes to the first configuration step "Image quality/Trigger configuration" (→ 7).
7 Image quality / Trigger configuration

7.1 Image quality

To ensure reliable code recognition adjust and set the reader so that the following criteria are met:

- The code has to be set to be sharp and should be of the highest possible contrast (ideal = black/white or white/black).
- The code has to be displayed within the search zone.
- The size of the code in the image should be no larger than approx. 2/3 of the image.
- The minimum module size of the code has to be taken into account for selecting the operating distance.
 (Operating instructions "dualis Multicode Reader O2I" or [www.ifm.com → Data sheet search → e.g. O2I102 → More information]).
- Any code position is possible.

If there is any interfering reflectance in the image, install the device transversely to the code plane, if necessary. Depending on the code size the resulting trapezoidal distortion can be tolerated within certain limits.

- Optimise the image definition (focus) via the setting screw on the back of the device.

- To maximise the read reliability and rate, adjust the blue search zone.
 - In the running process the code has to be seen within the search zone.
 - Only image data from that search zone will be used for reading.
 - The read rate largely depends on the size of the search zone. Therefore do not leave the search zone unnecessarily in its maximum size in time-critical applications.

The fine adjustment and optimisation of the search zone is made in the following configuration step "Define code". The effect of the search zone size on the read rate can be read in the result field.
► Switch the lighting segments on and off according to the application and the light conditions.
The code should be equally illuminated.
The 4 segments of the internal illumination can be activated independently with a mouse click on the segments (factory setting = internal illumination, 4 segments "on").

► Define the exposure time with [Auto setting].
Readjust the exposure time manually for difficult light or surface conditions.

► Select the tab [Trigger configuration] (→ 7.2).

7.2 Trigger configuration

► Select the trigger type in the pulldown menu.
 – Positive edge (external triggering)
 – Negative edge (external triggering)
 – Positive and negative edge (external triggering; this operating mode activates a trigger if a positive or negative edge is detected on the switching input).
 – Serial, TCP/IP or EtherNet/IP (triggering via the selected process interface → 6.5.2)
 – Continuous (internal triggering)

With activated function "Use trigger window" the reader tries to read a defined number of codes within a certain period of time after a trigger pulse. Reading is stopped when the number of "trials" has been reached or the time "Good reading(s) within" has elapsed.

Trials (1...100):
Number of codes that are expected within the time window.
Each change of status designates a trial:
If the same code is detected in two consecutive good readings, this is considered to be 1 trial.
If there is a bad reading between two identical good readings, they are considered to be 2 trials.
If two different codes are detected in two consecutive good readings, they are also considered to be 2 trials.
Good readings within (100...10000 ms, step increment 100 ms):
Time span during which the "trials" can be made.

Example 1:
Trials = 1; Good readings within = 5000 ms
The reading result is provided after 2000 ms since the first trial was reached after this time.

Example 2:
Trials = 5; Good readings within = 5000ms
The reading result is provided after 4000 ms since the 5 trials were reached after this time.

Example 3:
Trials = 5; Good readings within = 5000ms
The reading result is provided after 5000 ms since the 5 trials were reached after this time.

► Change to the next configuration step "Define code" with [Next] (→ 8).
8 Configuration step "Define code"

When a new configuration is created, the program automatically performs a code recognition process after the change from "Image quality / Trigger configuration" → "Define code". This may take several seconds.

8.1 Code recognition

► Select [Code recognition] in the tab "Code type".

8.1.1 Standard recognition and Extended recognition

Preferred for code applications with good contrast, surface and light conditions. No filter functions are necessary for the standard recognition.

► Select or leave [Extended recognition].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Extended recognition (Default setting)</th>
<th>Standard recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module colour</td>
<td>Dark symbols on light background and light symbols on dark background</td>
<td>Dark symbols on light background</td>
</tr>
<tr>
<td>Contrast</td>
<td>⩾ 10 %</td>
<td>⩾ 30 %</td>
</tr>
<tr>
<td>Module size</td>
<td>ECC200: ⩾ 4 pixels (for high-contrast images ≥ 2 pixels)</td>
<td>6...20 pixels</td>
</tr>
<tr>
<td></td>
<td>QR: ⩾ 3 pixels (for high-contrast images ≥ 2 pixels)</td>
<td>3...15 pixels</td>
</tr>
<tr>
<td>Column and line spacing</td>
<td>Greater distances possible (≤ 50 % of the module size)</td>
<td>No or small distance between adjoining modules (≤ 10 % of the module size)</td>
</tr>
<tr>
<td>Inclination</td>
<td>ECC200: ≤ 30°</td>
<td>≤ 10°</td>
</tr>
</tbody>
</table>
Enter the number of the codes to be recognised in [Codes per image].
(Codes of the same type!)

If "OCR" is selected, the number is limited to 1.

Enter [Maximum decoding time].
If the code is not read during this time, the evaluation will stop and the reading is a bad reading.

Select the code type in the pulldown menu.

Supported 2D codes

O2Ixx and O2I3xx

- ECC200
- PDF417
- QR

In addition O2I3xx

- Micro-QR
- Aztec Code
- GS1 ECC200
- GS1 QR Code
- GS1 Aztec Code

Supported 1D bar codes

O2Ixx and O2I3xx

- Interleaved 2-of-5
- Industrial 2-of-5
- Code 39
- Code 93
- Code 128
- Pharma code
- Codabar
- EAN8
- EAN8 Add-On 2
- EAN8 Add-On 5
- EAN13
- EAN13 Add-On 2
- EAN13 Add-On 5
- UPC-A
- UPC-A Add-On 2
- UPC-A Add-On 5
- UPC-E
- UPC-E Add-On 2
- UPC-E Add-On 5
- GS1 DataBar Omnidirectional
- GS1 DataBar Truncated
- GS1 DataBar Stacked
- GS1 DataBar Stacked Omnidirectional
- GS1 DataBar Limited
- GS1 DataBar Expanded
- GS1 DataBar Expanded Stacked

In addition O2I3xx

<table>
<thead>
<tr>
<th>Code Type</th>
<th>Composite*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS1 DataBar Omnidirectional</td>
<td>●</td>
</tr>
<tr>
<td>GS1 DataBar Truncated</td>
<td>●</td>
</tr>
<tr>
<td>GS1 DataBar Stacked</td>
<td>●</td>
</tr>
<tr>
<td>GS1 DataBar Stacked Omnidirectional</td>
<td>●</td>
</tr>
<tr>
<td>GS1 DataBar Limited</td>
<td>●</td>
</tr>
<tr>
<td>GS1 DataBar Expanded</td>
<td>●</td>
</tr>
<tr>
<td>GS1 DataBar Expanded Stacked</td>
<td>●</td>
</tr>
<tr>
<td>GS1 - 128</td>
<td>–</td>
</tr>
<tr>
<td>MSI Barcode</td>
<td>–</td>
</tr>
</tbody>
</table>

*) Composite is an extension of a 1D bar code by an additional 2D code. The 2D code can contain extended information about the product.

If the code type to be recognised is not known, select [Automatic recognition].

Pharma code and MSI code are not supported by the automatic recognition.
These code types can only be set manually.
Depending on the volume of the image information to be processed, automatic code recognition may take several seconds.

> The result field shows the code type and the number of codes recognised.

► Select [Read code].

> The result field shows:
 Number of codes found (figure)
 Number of codes searched (figure)
 Code string (content)
 Read time (ms)
 Total time (ms)

► Optimising the search zone by reducing or shifting it.
 Verify the effects on the read time in the result field with [Read code].

> The recognised codes are displayed in a green, numbered code field.

> When the mouse pointer is moved above the green code field, a tool tip will open giving specific code information (here e.g. code type, status of code recognition, polarity, code size, etc.).

► Continue to the next step "Process interface" with [Next].

If code recognition and the read process were not successful, repeat the process with the filter functions of "Preprocessing" (→ 8.3).

If this setting is not successful, either, repeat the process with the setting "Optimised recognition" (→ 8.1.2).

8.1.2 Optimisation (e. g. ECC200)

Code-specific read parameters are available for optimising the evaluation time.

► Select [Optimised recognition].
The "Optimisation" tab is displayed (change: grey → black).

► Click on [Optimisation].

► Adjustable code-specific parameters are activated (here e.g. ECC200).

► Set code-specific parameters.

► Activate [Strict model] if the device should use only the set code parameters for read. This feature can be used for finding codes with certain characteristics in the image while differing codes are ignored. If this menu item is deactivated, the device will first try to perform reading with the set parameters. If this is not successful, all possible code parameters will be processed automatically.

[Teach] adopts the recognised module geometry (module colour, symbol columns etc.). [Default settings] and [Extended settings] reset the parameters.

The min/max indications for column and row spacing are to be interpreted with regard to the cell size.
Column/row spacing

<table>
<thead>
<tr>
<th>Column/row spacing</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No spacing between two neighbouring printed modules.</td>
</tr>
<tr>
<td>Small</td>
<td>The spacing between two neighbouring printed modules is max. approx. 25% of the cell width/height.</td>
</tr>
<tr>
<td>Large</td>
<td>The spacing between two neighbouring printed modules is max. approx. 50% of the cell width/height.</td>
</tr>
</tbody>
</table>

1: no column/row spacing
2: small column/row spacing
3: large column/row spacing
4: cell (is ideal module width/height)
5: printed module

► Check the reading results and times in the result field with [Read code].
► Continue to the next step "Process interface" with [Next]) (→ 9).

8.2 Text recognition (only O2I35x)

In addition, the devices of the O2I35x series support the reading of texts (OCR). The text recognition supports the following functions:
- Read free-standing texts (Stand-alone OCR)
- Read texts by means of a reference object (Code-based OCR)

8.2.1 Stand-alone OCR

► Select [Stand-alone OCR] in the tab "Code type".
> The tab "Text" is activated and displayed.

![Text recognition interface](image)

Teach text parameters

The configuration software supports the automatic recognition of the required read parameters.

► Click on [Single character identification] in the section "Character definition".
► Drag an "individual character" bounding box around an individual character of the text to be recognised.

![Teach text parameters interface](image)

Select a character with a typical height and width of the selected font. "2" or "B" obtain a better result than "1" or "I", since they are too narrow.
For optimum results the text to be recognised should be min. 70 pixels high. Move the multicode reader closer to the target text if the characters appear to be too small.

► Click on [Finish character identification].
> The read parameters are set and the image rotation is aligned to the text.

Select the font
► Select the required font.

<table>
<thead>
<tr>
<th>Font</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial (default setting)</td>
<td>Recognises characters in Arial, OCR-B or other sans-serif fonts. These fonts are usually used on signs or the like. Available special characters: - / + . $ % * e ¥</td>
</tr>
<tr>
<td>DotPrint</td>
<td>Recognises characters that were printed by dot matrix printers. Lower case characters are not recognised.</td>
</tr>
<tr>
<td>Document</td>
<td>Recognises characters in Arial, Courier or Times New Roman These fonts are usually used in documents or letters. Please note that the characters "I" and "1" cannot be distinguished in the Arial font. "I" may be recognised as "1" and vice versa. Available special characters: - = + < > . # $ % & () @ * e ¥</td>
</tr>
</tbody>
</table>

Select the text content
► Select the preferential content in the section "Text definition".

<table>
<thead>
<tr>
<th>Preferential content</th>
<th>Permitted characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbers preferred</td>
<td>0-9 (i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9)</td>
</tr>
<tr>
<td>Capital letters preferred</td>
<td>Capital letters of the English alphabet</td>
</tr>
<tr>
<td>Letters preferred (default setting)</td>
<td>Capital and small letters of the English alphabet</td>
</tr>
<tr>
<td>Letters and numbers</td>
<td>All characters of "Numbers preferred" and "Letters preferred"</td>
</tr>
<tr>
<td>Anything</td>
<td>All characters</td>
</tr>
<tr>
<td>Regular expression...</td>
<td>Opens the "Extended..." dialogue to create a regular expression</td>
</tr>
</tbody>
</table>

Test the settings
► Click on [Read char] to check if the text is correctly recognised.
> The recognised text is displayed in a green, numbered text field.
► If necessary, adapt the search zone by reducing or shifting. By clicking on [Read Char] again check the effect on the read time in the result window.

If the text is not correctly recognised, the read settings can be further refined in the extended settings (→ 8.2.3)
8.2.2 Code-based OCR

The function "Code-based OCR" permits reading of texts within a region that is determined by the bounding box of a reference code and its relative position to the text. By evaluating this position information the size of the text search zone can be decreased so as to improve the recognition time.

<table>
<thead>
<tr>
<th>Supported 1D bar codes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interleaved 2-of-5</td>
</tr>
<tr>
<td>Industrial 2-of-5</td>
</tr>
<tr>
<td>Code 39</td>
</tr>
<tr>
<td>Code 93</td>
</tr>
<tr>
<td>Code 128</td>
</tr>
<tr>
<td>Pharma code</td>
</tr>
<tr>
<td>Codabar</td>
</tr>
<tr>
<td>EAN8</td>
</tr>
<tr>
<td>EAN8 Add-On 2</td>
</tr>
<tr>
<td>EAN8 Add-On 5</td>
</tr>
<tr>
<td>EAN13</td>
</tr>
<tr>
<td>EAN13 Add-On 2</td>
</tr>
<tr>
<td>EAN13 Add-On 5</td>
</tr>
<tr>
<td>UPC-A</td>
</tr>
<tr>
<td>UPC-A Add-On 2</td>
</tr>
<tr>
<td>UPC-A Add-On 5</td>
</tr>
<tr>
<td>UPC-E</td>
</tr>
<tr>
<td>UPC-E Add-On 2</td>
</tr>
<tr>
<td>UPC-E Add-On 5</td>
</tr>
<tr>
<td>GS1 DataBar Omnidirectional</td>
</tr>
<tr>
<td>GS1 DataBar Truncated</td>
</tr>
<tr>
<td>GS1 DataBar Stacked</td>
</tr>
<tr>
<td>GS1 DataBar Stacked Omnidirectional</td>
</tr>
<tr>
<td>GS1 DataBar Limited</td>
</tr>
<tr>
<td>GS1 DataBar Expanded</td>
</tr>
<tr>
<td>GS1 DataBar Expanded Stacked</td>
</tr>
<tr>
<td>GS1 - 128</td>
</tr>
<tr>
<td>MSI bar code</td>
</tr>
</tbody>
</table>

► In the tab "Code type" select the reference code in the pulldown menu.

► Select [Code-based OCR].

Symbol: Code-based OCR can only be selected if a reference code is found in the image.

► The tab "Text" is displayed.

► Follow the steps "Teach text parameters", "Select the font" and "Select the text content" in (→ 8.2.1 Stand-alone OCR).
Set text rotation depending on the reference code

In the section "Text definition" the text orientation can be set relative to the reference code in steps of 90°.

► Select the required orientation via the buttons.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Example</th>
<th>Setting</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>![Default Image]</td>
<td>Rotated by -90°</td>
<td>![Rotated by -90° Image]</td>
</tr>
<tr>
<td>Rotated by 180°</td>
<td>![Rotated by 180° Image]</td>
<td>Rotated by +90°</td>
<td>![Rotated by +90° Image]</td>
</tr>
</tbody>
</table>

Create OCR regions

► Click on [Set OCR ROI].

> The bounding box of the reference code is detected and the image is automatically aligned.

> Drag the bounding box of the "Search zone OCR" around the text to be detected.

► Click on [Set OCR ROI] again.

> The OCR region has been created.

Test the settings

► Click on [Read Char] to test if the text is correctly recognised.

> The code and the recognised text are displayed in a green, numbered text field as result 1 and result 2.

► If necessary, adapt the search zone by reducing or shifting. By clicking on [Read Char] again check the effect on the read time in the result window.

If the text is not correctly recognised, the read settings can be further refined in the extended settings (→ 8.2.3)
8.2.3 Extended settings

In the dialogue "Extended settings" the parameters for text recognition can be further refined.

General parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text orientation</td>
<td>Determines the orientation of an individual text line or a paragraph relative to the horizontal image axis. Range: 0...45 degrees (default setting: 30)</td>
</tr>
<tr>
<td>Lines of text in image</td>
<td>Defines the max. number of text lines. Range: 0...10 (default setting: 1)</td>
</tr>
<tr>
<td>Regular expression</td>
<td>Defines a regular expression as recognition criterion (→ 9.1.2 Regular expression)</td>
</tr>
<tr>
<td>Font</td>
<td>Defines the font of the text to be detected.</td>
</tr>
</tbody>
</table>

Only text with an orientation between +45° and -45° can be recognised.

Segmentation parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke width</td>
<td>Stroke width of a character. Possible values: bold, light, medium, ultra light (default setting: medium)</td>
</tr>
<tr>
<td>Char width</td>
<td>Average width of a character. Range: 10...640 pixels (default setting: 130)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Char height</td>
<td>Approximate height of the text lines in the defined region. Range: 10...640 pixels (default setting: 130)</td>
</tr>
<tr>
<td>Punctuation</td>
<td>This parameter permits the recognition of punctuation marks (e.g. .:;"!?/()[]-). If the parameter is deactivated, punctuation marks are ignored. Default setting: deactivated</td>
</tr>
<tr>
<td>Eliminate lines</td>
<td>This parameter should be activated if the character recognition is disturbed by horizontal and vertical lines. Default setting: deactivated</td>
</tr>
<tr>
<td>Disconnect fragments</td>
<td>This parameter should be activated if the characters to be recognised are fragmented, i.e. a character is not coherent but separated into several parts. Example: If instead of a small "i" a small "l" is recognised, this check box should be activated. Default setting: deactivated</td>
</tr>
</tbody>
</table>
| Segmentation method | This parameter controls the segmentation, i.e. the differentiation between text and background in the defined region of the image (ROI). The segmentation methods assume that the text is darker than the background. Possible values:
 - Default setting: This method detects text that deviates locally from the background. This is the preferred method for highly textured backgrounds.
 - Noise reduction: The minimum contrast is set automatically to reduce the number of the very small regions. This method is particularly suited for very noisy images. Default setting: default |
| Fragment distance | This parameter influences the connection of character fragments. If too many fragments are connected, the parameter should be set to "narrow" or "medium". If too few fragments are connected, the parameter should be set to "medium" or "wide". This parameter can only be configured if the parameter "Disconnect fragments" is activated. Default setting: medium |
| Threshold offset | Value to adapt segmentation. This parameter can only be configured if the parameter "Segmentation method" is set to "Noise reduction". Range: 0...45 (default setting: 0) |
| Contrast | Minimum difference of the grey-scale value between text and background. This parameter can only be configured if the parameter "Segmentation method" is set to "Default". Range: 1...255 (default setting: 10) |
| Diacritic marks | This parameter permits the recognition of diacritic marks (e.g. pronunciation or stress marks such as é, á). If the parameter is deactivated, the diacritic marks are ignored. Default setting: deactivated |
| Clutter size max | This value should be increased if the closer environment of the character to be detected contains clutters (small regions). Range: 1...100 (default setting: 10) |
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition lines</td>
<td>This parameter should be activated if neighbouring characters or characters from different text lines are connected with each other. Default setting: deactivated</td>
</tr>
</tbody>
</table>
| Partition method | This parameter controls the partition of neighbouring, interconnected characters. This parameter can only be configured if the parameter "Partition lines" is activated. Possible values:
 - none: A partition is not carried out.
 - fixed_width: A constant character width is assumed for the partition. The partition begins with the left edge of the region.
 - variable_width: The characters are separated at the point of the thinnest connection. This method should be used for fonts with variable character length or for several consecutive, interconnected characters. Default setting: none |
| Quality of decoded chars | Via this parameter it is possible to exclude characters that were only insufficiently recognised from further processing. The character quality is a percentage value that reflects the difference between the detected character and an ideal reference character. The higher the value, the better the quality of the detected character. Possible values:
 - Quality not evaluated: There is no evaluation.
 - Characters of minor quality: Characters of a quality of less than 90 % are rejected during text recognition.
 - Characters of medium quality: Characters of a quality of less than 95 % are rejected during text recognition. Default setting: Quality not evaluated. |
| Apply blurry recognition | This parameter permits the replacement of low-quality characters with a placeholder "?" instead of rejecting them. This parameter can only be configured if the parameter "Quality of decoded chars" is set to "Characters of minor quality" or "Characters of medium quality". Default setting: deactivated |

8.3 Preprocessing (filter functions)

In difficult applications that cannot be read with the standard or extended recognition, filter functions can be used. This may, for example, be the case for codes on curved, reflective surfaces or for codes with heavy soiling or for inversely printed codes.

- Select the tab [Preprocessing].
- Select the filter function(s).
- The effect of a filter function can be seen directly in the image field.
Filter functions

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>
| Smoothing | Smoothing filter
Removes/suppresses noise and noise pixels
(filter intensity divided into 1x, 2x, 3x) |
| Enlarge dark pixels | Correction of modules that are too small
Enlarges/combines dark pixel groups
Decreases/removes light pixel gaps
(filter intensity divided in 1x, 2x) |
| Enlarge light pixels | Correction of modules that are too large
Enlarges/combines light pixel groups
Decreases/removes dark pixel groups
(filter intensity divided in 1x, 2x) |
| Invert | Inversion of the brightness values (black/white → white/black) |

A combination of up to 3 filters ensures optimisation for special cases. The individual filter functions are applied to the field of view one after the other.

Each filter function requires some calculation time and decreases the obtainable read rate in the process.

- Return to the initial menu by clicking on the tab [Code type].
- Define the number of codes in the search zone [Codes per image].
(Codes of the same type!)
- Select the code type in the pulldown menu.
If the code type to be recognised is not known, select [Automatic recognition].
> The image in the reading range changes from "Live" to "Freeze".
> The recognised code type is displayed in the result field.
- Select [Read code].
> The result field shows:
 Number of codes found (figure)
 Number of codes searched (figure)
 Code string (content)
 Read time (ms)
 Total time (ms)
- Continue to the next step "Process interface" with [Next] (→ 9).

If code recognition and the reading process were not successful, repeat the process with other filter functions.

- Select [Optimisation...] if the read process and the evaluation time are to be further optimised (→ 8.1.2).
9 Configuration step "Process interface"

9.1 Mode (process performance)

► Select the process performance of the device at [Mode].

<table>
<thead>
<tr>
<th>Mode</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>Code content is read and transmitted.</td>
</tr>
<tr>
<td>Compare</td>
<td>Code content is compared with a reference code. (no 1:1 match = failed reading)</td>
</tr>
<tr>
<td>Compare (ignore case)</td>
<td>If the stand-alone OCR is used, only the text contents are compared.</td>
</tr>
<tr>
<td></td>
<td>Note: The comparing function only considers the first result found.</td>
</tr>
<tr>
<td>Pattern recognition</td>
<td>Code content is compared with a reference code. This reference code may contain placeholders (→ 9.1.1)</td>
</tr>
<tr>
<td>Pattern recognition (ignore upper / lower case)</td>
<td>(no match = failed reading).</td>
</tr>
<tr>
<td>Regular expression</td>
<td>Code content is compared with a regular expression.</td>
</tr>
<tr>
<td>Regular expression (ignore upper / lower case)</td>
<td>This reference code may contain placeholders (→ 9.1.2) (no match = failed reading).</td>
</tr>
</tbody>
</table>

► Activate function "String numeration" to add a consecutive number to start and stop characters.

Example:

String of characters without numeration: **startMATCHstopstartMATCHstopstartMATCHstop**

String of characters with numeration: **start01MATCHstop01start02MATCHstop02start03MATCHstop03**

With the function "RDY/OUT activation" the status of the two switching outputs can be defined via the process interface (only O2I3xx).

- Default: Switching output "OUT" = code evaluation, switching output "RDY" = ready signal
- External: Set RDY/OUT via the process interface (→ 14.4.16)
Test the entered character strings with [Check data transmission].

In the area [Check process interface output] the entered character strings can be transferred to the processor as a test.

Process data protocol (→ 14)

If you use the text recognition function (OCR), a text string is displayed instead of "Multicode Reader" & "My Location".

Code-based OCR provides two results each. The first result contains the code content, the second the recognised text.

9.1.1 Pattern recognition

The code content is compared with a pattern in the reference code. In the reference code, ? stands for any character, * for any character string.

<table>
<thead>
<tr>
<th>Reference code</th>
<th>Code content</th>
<th>Result</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-03-2009*</td>
<td>31-03-2009-ABCD</td>
<td>Good reading</td>
<td>Good reading string</td>
</tr>
<tr>
<td></td>
<td>31-03-2008-ABCD</td>
<td>Bad reading</td>
<td>Bad reading string</td>
</tr>
<tr>
<td>31-07-2009</td>
<td>31-03-2009</td>
<td>Good reading</td>
<td>Good reading string</td>
</tr>
<tr>
<td></td>
<td>31-04-2009</td>
<td>Good reading</td>
<td>Good reading string</td>
</tr>
<tr>
<td></td>
<td>31-10-2009</td>
<td>Bad reading</td>
<td>Bad reading string</td>
</tr>
<tr>
<td>31-07-20*</td>
<td>31-03-2010</td>
<td>Good reading</td>
<td>Good reading string</td>
</tr>
<tr>
<td>31-07-20*</td>
<td>31-10-2010</td>
<td>Bad reading</td>
<td>Bad reading string</td>
</tr>
</tbody>
</table>

The case can be ignored if set accordingly.
9.1.2 Regular expression

Regular expressions are a kind of filter criterion for texts. They ensure that character strings are verified for a certain composition.

Example 1
Specification of a range of numbers as good reading, without having to explicitly indicate all numbers.

<table>
<thead>
<tr>
<th>Reference code</th>
<th>Code content</th>
<th>Result</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-03-2009</td>
<td>Good reading</td>
<td></td>
<td>Good reading string</td>
</tr>
<tr>
<td>31-03-2008</td>
<td>Good reading</td>
<td></td>
<td>Good reading string</td>
</tr>
<tr>
<td>31-03-2006</td>
<td>Bad reading</td>
<td></td>
<td>Bad reading string</td>
</tr>
<tr>
<td>31-03-2009</td>
<td>Good reading</td>
<td></td>
<td>Good reading string</td>
</tr>
<tr>
<td>31-3-2009</td>
<td>Good reading</td>
<td></td>
<td>Good reading string</td>
</tr>
<tr>
<td>31-43-2009</td>
<td>Bad reading</td>
<td></td>
<td>Bad reading string</td>
</tr>
</tbody>
</table>

Example 2
Access to parts of a code

Required information:
Reference code: 31-((0-3)\([0-9]\)-[0-9])-2009
Good reading string: month: $1 ($1 stands for the 1st expression in round brackets)
Bad reading string: fail

<table>
<thead>
<tr>
<th>Reference code</th>
<th>Code content</th>
<th>Result</th>
<th>Output</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-03-2009</td>
<td>Good reading</td>
<td>Good reading string</td>
<td>month: 03</td>
<td></td>
</tr>
<tr>
<td>31-3-2009</td>
<td>Good reading</td>
<td>Good reading string</td>
<td>month: 3</td>
<td></td>
</tr>
<tr>
<td>31-43-2009</td>
<td>Bad reading</td>
<td>Bad reading string</td>
<td>fail</td>
<td></td>
</tr>
<tr>
<td>31-143-2009</td>
<td>Bad reading</td>
<td>Bad reading string</td>
<td>fail</td>
<td></td>
</tr>
</tbody>
</table>

The case can be ignored if set accordingly.

For a syntax description and more information e.g. on the internet see en.wikipedia.org/wiki/Regular_expression

Test a regular expression with [Check data transmission].
Any character string or a code content already read (→ 9.1.3) can be checked with a regular expression.
9.1.3 Use code content as reference code

► Click into the code field with the right mouse button.
> The context menu opens.
► Select [Use as reference code].

This function is available in the Compare, Pattern recognition and Regular expression modes.
9.1.4 Define character strings

- Define character strings (data strings).
 An ASCII editor can be activated as an input assistant for each field.

![ASCII editor](image)

9.2 Process data content

In the tab "Content and Quality" you define which contents are to be transferred together with the process data.

- Activate "Transmit content description" to prepend a unique marking to each element of the result message (→ 14.7 Result output with description).
- Define with "Append configuration number" if the configuration number with which reading was successful, is automatically appended to the process data.

You can find information about more settings in the respective sub-chapters:

- Code position (→ 9.3)
- Image output (→ 9.4)
- Code quality (→ 9.5)
9.3 Code position

Irrespective of the set search zone the reference point of the code position is always the top left corner of the image (pixel coordinates: x=1, y=1).

The codes are output in the order top to bottom, left to right.

- Define the "centre coordinates" (= 1 pair of coordinates per code) or "corner coordinates" (= 4 coordinate pairs per code).

Example output format for 4 codes with corner coordinates

```
startc2220509;0181;0333;0185;0331;0110;0506;0105;stop
startc11110247;0186;0071;0189;0072;0112;0246;0113;stop
startc44440518;0416;0337;0419;0336;0338;0515;0334;stop
startc33330248;0421;0069;0424;0069;0344;0248;0342;stop
```

Result output see process data protocol (→ 14.6 und → 14.7)

9.4 Transmit image

- Activate [Image output] if the image captured is to be output via the process interface.
- Define the file format of the images via [Image format] (Windows BMP or JPEG).
9.5 Code quality

There is an assessment of the code quality for the 2D code types ECC200, QR, PDF417, Micro QR and Aztec. For other code types the tab field [Quality] is suppressed.

Units of the O2I3xx series additionally support the evaluation of the code quality of 1D bar codes, see chapter (→ 9.5.2).

The SEMI T10 test method is only available for unit O2I300 to O2I305 in combination with the 2D code type ECC200 (→ 9.5.3).

► Select [Content and Quality].
► Select [Quality] (here e.g. ECC200 quality).
> The selection menu with quality features is displayed.

9.5.1 Evaluation of the code quality

The ISO/IEC15415 and ISO/IEC16022 standards define various features to assess the quality of an ECC200, QR, PDF417, Micro QR or Aztec code.

These quality features are analysed independently and rated in 5 steps.

Comparison ISO/IEC 15415 and ISO/IEC 16022:

<table>
<thead>
<tr>
<th>Quality characteristic (acc. to standard)</th>
<th>Meaning (selection field)</th>
<th>ISO/IEC 15415</th>
<th>ISO/IEC 16022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decoding</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Symbol Contrast</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Print Growth</td>
<td>–</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Axial Nonuniformity</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Unused Error Correction</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Grid Nonuniformity</td>
<td>●</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Fixed Pattern Damage</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Modulation</td>
<td>●</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Overall Quality</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

● = defined in standard / – not defined in standard

► Click on [Append code quality] if the selected quality features should be transferred with the process data.
Define if the assessment is to be effected in the steps 0...4 to ISO/IEC 15415 or in the steps A...F to ISO/IEC 16022.

<table>
<thead>
<tr>
<th>ISO/IEC 15415</th>
<th>ISO/IEC 16022</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>passed, very good, highest quality level</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>passed ↓</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>passed ↓</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>passed ↓</td>
</tr>
<tr>
<td>0</td>
<td>F</td>
<td>not passed, lowest quality level</td>
</tr>
</tbody>
</table>

► Click on the desired quality features.
(Overall quality, Contrast etc.)
Configuration software E2I200

<table>
<thead>
<tr>
<th>ECC200 quality features</th>
<th>QR quality features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PDF417 quality features</th>
<th>Micro QR quality features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aztec quality features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Overview and description:

<table>
<thead>
<tr>
<th>Feature</th>
<th>ECC200</th>
<th>QR</th>
<th>PDF417</th>
<th>Micro QR</th>
<th>Aztec</th>
<th>GS1 ECC200</th>
<th>GS1 QR</th>
<th>GS1 PDF417</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol identifier</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Used coding → 14.6 and → 14.7) Marking if the code contains FNCI and/or ECI characters.</td>
</tr>
<tr>
<td>Overall</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Overall quality of the code. Corresponds to the individual feature with the worst rating.</td>
</tr>
<tr>
<td>Contrast</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>Contrast of the modules to the background.</td>
</tr>
<tr>
<td>Modulation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Homogeneity of the light and dark modules.</td>
</tr>
<tr>
<td>Finder pattern damage</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>Error rate in the 3 basic elements of the code (finder pattern, alternating pattern and quiet zone).</td>
</tr>
<tr>
<td>Decode</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Rating 4 (A) if the code can be decoded, otherwise 0 (F).</td>
</tr>
<tr>
<td>Axial-Nonuniformity</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>Ratio of the module size in horizontal and vertical direction.</td>
</tr>
<tr>
<td>Grid distortion</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>A measure for how far the module corresponds to the symbol grid.</td>
</tr>
<tr>
<td>Unused error correction</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>A measure for the degree of distortion of the code and what part of the existing error correction mechanisms was necessary to nevertheless decode the code successfully.</td>
</tr>
<tr>
<td>Print growth</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Ratio dark/light modules in alternating pattern.</td>
</tr>
<tr>
<td>Defects</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Assessment of the bar/gap representation of the code.</td>
</tr>
<tr>
<td>Start / stop pattern</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Assessment of the start/stop pattern.</td>
</tr>
<tr>
<td>Codeword yield</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Assessment of the relative number of correctly decoded words.</td>
</tr>
</tbody>
</table>

● = feature relevant / – = feature not relevant

► Change to the next configuration step "Overall function test" with [Next] (→ 10).
9.5.2 Code quality of 1D bar codes

Units of the O2I3xx series support the evaluation of the code quality of the following 1D bar codes:

- Interleaved 2-of-5, Industrial 2-of-5
- Code 39, Code 93, Code 128
- EAN8, EAN8-Add-On 2, EAN8-Add-On 5
- EAN13, EAN13-Add-On 2, EAN13-Add-On 5
- UPC-A, UPC-A Add-On 2, UPC-A Add-On 5
- UPC-E, UPC-E Add-On 2, UPC-E Add-On 5
- GS1 - 128
- MSI bar code
- Codabar
- Pharma code
- GS1 Databar

Overview of the quality parameters (except GS1 Databar)

<table>
<thead>
<tr>
<th>Element</th>
<th>Quality parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Overall quality</td>
</tr>
<tr>
<td>1</td>
<td>Decode</td>
</tr>
<tr>
<td>2</td>
<td>Symbol contrast</td>
</tr>
<tr>
<td>3</td>
<td>Minimum reflection value</td>
</tr>
<tr>
<td>4</td>
<td>Minimal Edge contrast</td>
</tr>
<tr>
<td>5</td>
<td>Modulation</td>
</tr>
<tr>
<td>6</td>
<td>Defects</td>
</tr>
<tr>
<td>7</td>
<td>Decodability</td>
</tr>
<tr>
<td>8</td>
<td>Further requirements</td>
</tr>
</tbody>
</table>

The quality parameters for GS1 Databar bar codes are divided into three groups:

- Overall
- Linear
- Composite incl. subgroup composite RAP

The composite quality parameters are only available if the composite component is activated in "Define code" → "Optimisation" in the operating program (setting "Optional" or "Mandatory").

Overall quality

<table>
<thead>
<tr>
<th>Element</th>
<th>Quality parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Overall quality</td>
</tr>
<tr>
<td>1</td>
<td>Overall quality linear</td>
</tr>
<tr>
<td>2</td>
<td>Overall quality composite</td>
</tr>
</tbody>
</table>

Linear

<table>
<thead>
<tr>
<th>Element</th>
<th>Quality parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Decoding</td>
</tr>
<tr>
<td>4</td>
<td>Symbol contrast</td>
</tr>
<tr>
<td>5</td>
<td>Minimum reflection value</td>
</tr>
<tr>
<td>6</td>
<td>Minimal edge contrast</td>
</tr>
<tr>
<td>7</td>
<td>Modulation</td>
</tr>
<tr>
<td>8</td>
<td>Defects</td>
</tr>
<tr>
<td>9</td>
<td>Decodability</td>
</tr>
<tr>
<td>10</td>
<td>Further requirements</td>
</tr>
</tbody>
</table>
Composite

<table>
<thead>
<tr>
<th>Element</th>
<th>Quality parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Decoding</td>
</tr>
<tr>
<td>12</td>
<td>Overall quality RAP pattern</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composite RAP</th>
<th>Quality parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Contrast</td>
</tr>
<tr>
<td>14</td>
<td>Minimum reflection value</td>
</tr>
<tr>
<td>15</td>
<td>Minimal Edge contrast</td>
</tr>
<tr>
<td>16</td>
<td>Modulation</td>
</tr>
<tr>
<td>17</td>
<td>Defects</td>
</tr>
<tr>
<td>18</td>
<td>Decodability</td>
</tr>
<tr>
<td>19</td>
<td>Codeword yield</td>
</tr>
<tr>
<td>20</td>
<td>Unused error correction</td>
</tr>
<tr>
<td>21</td>
<td>Modulation</td>
</tr>
<tr>
<td>22</td>
<td>Decodability</td>
</tr>
<tr>
<td>23</td>
<td>Defects</td>
</tr>
</tbody>
</table>
9.5.3 Evaluation of the code quality to SEMI T10

The SEMI T10 test method can be used in addition to the ISO/IEC 15415 and ISO/IEC 16022 quality parameters.

The SEMI T10 test method is only available for unit O2I300 to O2I305 in combination with the 2D code type ECC200.

► Select [Content and Quality].
► Select the top dropdown menu.
► In the dropdown menu "Do not append code quality" is preset.
► Select [Append SEMI T10 and code quality (grade 0-4 / A-F)].

To assess the quality of an ECC200 code SEMI T10 provides various quality values. The quality values are associated with defined quality parameters.

Overview of the quality parameters

<table>
<thead>
<tr>
<th>Element</th>
<th>Quality parameter (meaning)</th>
<th>Quality parameter (group, acc. to standard)</th>
<th>Quality parameter (name, acc. to standard)</th>
<th>Quality parameter (details)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Location and orientation of the Data Matrix Symbol</td>
<td>Location and orientation of the Data Matrix Symbol</td>
<td>Data Matrix Location Descriptors</td>
<td>Coordinate of the image's corner points along with number of rows M and columns N.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data Matrix Grid</td>
<td>Divide the image into small grids M x N.</td>
</tr>
<tr>
<td>2</td>
<td>Symbol contrast</td>
<td>Symbol contrast</td>
<td>Symbol contrast</td>
<td>The value for symbol contrast reports the contrast between light and dark classified symbol pixels with respect to the full grey-value range (255 for by images) in percent.</td>
</tr>
<tr>
<td>3</td>
<td>Ratio symbol contrast / signal noise</td>
<td>Symbol contrast to SNR</td>
<td>Symbol Contrast Signal To Noise Ratio</td>
<td>Relative measure of the symbol contrast to the noise or maximum deviation in the light or dark grayscale level in the symbol.</td>
</tr>
<tr>
<td>4</td>
<td>Growth of the Data Matrix cells</td>
<td>Mark Growth</td>
<td>Horizontal Mark Growth</td>
<td>This parameter gives an idea of the actual size of the cell vs the observed size - horizontal difference in the cell size.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertical Mark Growth</td>
<td>This parameter gives an idea of the actual size of the cell vs the observed size - vertical difference in the cell size.</td>
</tr>
<tr>
<td>5</td>
<td>Data Matrix Cell Size</td>
<td>Data Matrix Cell Size</td>
<td>Data Matrix Cell Height</td>
<td>Height of each cell in the grid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data Matrix Cell Width</td>
<td>Width of each cell in the grid.</td>
</tr>
<tr>
<td>6</td>
<td>Data Matrix Mark Misplacement</td>
<td>Data Matrix Mark Misplacement</td>
<td>Horizontal Mark Misplacement</td>
<td>Displacement of the alternating pattern marks’ center in horizontal direction in percent respect the cell width.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vertical Mark Misplacement</td>
<td>Displacement of the alternating pattern marks’ center in vertical direction in percent respect the cell height.</td>
</tr>
<tr>
<td>7</td>
<td>Defects</td>
<td>Defects</td>
<td>Cell Defects</td>
<td>Percentage of identified image pixels with incorrect binary values.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Finder Pattern Defects</td>
<td>Within the L pattern - percentage of identified image with incorrect binary values.</td>
</tr>
<tr>
<td>8</td>
<td>Unused Error Correction</td>
<td>Unused Error Correction</td>
<td>Unused Error Correction Value</td>
<td>Unused error correction values blockwise while decoding the 2D bar code.</td>
</tr>
</tbody>
</table>
Click on [Append code quality] if the selected quality parameters should be transferred with the process data.

Format of the quality values

<table>
<thead>
<tr>
<th>Element</th>
<th>Quality parameter (name, acc. to standard)</th>
<th>Description of value</th>
<th>Value length</th>
<th>Example</th>
<th>Description of example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data Matrix Location Descriptors</td>
<td>Corner 1 positions X and Y coordinates</td>
<td>4 Byte x 2</td>
<td>01250136</td>
<td>X=125, Y=136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corner 2 positions X and Y coordinates</td>
<td>4 Byte x 2</td>
<td>00440612</td>
<td>X=44, Y=612</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corner 3 positions X and Y coordinates</td>
<td>4 Byte x 2</td>
<td>01230125</td>
<td>X=123, Y=125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corner 4 positions X and Y coordinates</td>
<td>4 Byte x 2</td>
<td>00030065</td>
<td>X=3, Y=65</td>
</tr>
<tr>
<td></td>
<td>Data Matrix Grid</td>
<td>ECC200 N (rows)</td>
<td>4 Byte</td>
<td>0010</td>
<td>ECC200 rows=10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECC200 M (columns)</td>
<td>4 Byte</td>
<td>0010</td>
<td>ECC200 columns=10</td>
</tr>
<tr>
<td>2</td>
<td>Symbol contrast</td>
<td>Contrast between light and dark, in procent</td>
<td>4 Byte</td>
<td>0089</td>
<td>Contrast: 8,9 %</td>
</tr>
<tr>
<td>3</td>
<td>Symbol Contrast Signal To Noise Ratio</td>
<td>Ratio of contrast between light and dark modules</td>
<td>4 Byte</td>
<td>0311</td>
<td>Ratio of 3,11</td>
</tr>
<tr>
<td>4</td>
<td>Horizontal Mark Growth</td>
<td>Width of module respect module+space, in procent</td>
<td>4 Byte</td>
<td>0415</td>
<td>Value of 41,5 %</td>
</tr>
<tr>
<td></td>
<td>Vertical Mark Growth</td>
<td>Height of module respect module+space, in procent</td>
<td>4 Byte</td>
<td>0325</td>
<td>Value of 32,5 %</td>
</tr>
<tr>
<td>5</td>
<td>Data Matrix Cell Height</td>
<td>Average module height</td>
<td>4 Byte</td>
<td>0020</td>
<td>Cell height avg = 20</td>
</tr>
<tr>
<td></td>
<td>Data Matrix Cell Width</td>
<td>Average module width</td>
<td>4 Byte</td>
<td>0019</td>
<td>Cell width avg = 19</td>
</tr>
<tr>
<td>6</td>
<td>Horizontal Mark Misplacement</td>
<td>Misplacement respect the horizontal direction, in procent</td>
<td>4 Byte</td>
<td>0152</td>
<td>Value of 15,2 %</td>
</tr>
<tr>
<td></td>
<td>Vertical Mark Misplacement</td>
<td>Misplacement in procent respect the vertical direction</td>
<td>4 Byte</td>
<td>0178</td>
<td>Value of 17,8 %</td>
</tr>
<tr>
<td>7</td>
<td>Cell Defects</td>
<td>Percentage of incorrect classified symbol pixels</td>
<td>4 Byte</td>
<td>0485</td>
<td>Value of 4,5 %</td>
</tr>
<tr>
<td></td>
<td>Finder Pattern Defects</td>
<td>Percentage of finder pattern pixels incorrectly classified</td>
<td>4 Byte</td>
<td>0237</td>
<td>Value of 23,7 %</td>
</tr>
<tr>
<td>8</td>
<td>Unused Error Correction Value</td>
<td>Error correction capabilities not used, in procent</td>
<td>4 Byte</td>
<td>0666</td>
<td>Value of 66,6 %</td>
</tr>
</tbody>
</table>

Click on the required quality parameters (overall quality, contrast etc.).
Change to the next configuration step "Overall function test" with [Next] (→ 10).
10 Configuration step "Overall function test"
This final step tests all settings of the new configuration.
▷ Click on [Test on].
▷ Click on [Release trigger].
> The device performs reading on the basis of the previous settings.
> The result field shows:
 Number of codes found (figure)
 Number of codes searched (figure)
 Code string (content)
 Read time (ms)
 Total time (ms)
With internal triggering [Release trigger] is deactivated. Here the read process is continuous as soon as [Test on] is clicked on.
▷ To terminate click on [Test off].

To confirm the configuration, click on [Next].
▷ Acknowledge the note with [Yes].

> The configuration is saved.
The program returns to the directory structure.
The newly created configuration is active.
10.1 Save the read result

The last 32 readings are recorded to the first-in-first-out principle. They can be selected individually and saved for evaluation purposes.

Visualisation (default setting): good reading = green, error = red (→ 5.3.2 Colours)

► Select required reading in the window "Last readings".

► Click on [Save].

► Define the memory location, assign a file name.

> The read result and the image are saved as HTML/XML or BMP file. Display via any internet browser.
10.2 Delete the read results

► Click [Reset].

> The statistics are reset.
 The read results and the image tank are deleted.
 The window "Last readings" is blank.

11 Monitor mode

In this mode the operation of the device is observed.

With each triggering the image captured is transferred to the operating program, displayed and evaluated.
The respective read result is displayed in the result field.

The image transmission to the operating program reduces the read rate.

► Should the read results be saved or assessed, continue with a click on [Service report].

> The device stops the read process.
 The monitor mode is exited.
12 Service report mode

Access to this mode can be locked by means of a password. (% 6.7 Password protection)

12.1 Evaluations

The read results obtained in the monitor mode can be saved locally as evaluation protocol.

12.1.1 Individual evaluations

Define which evaluations are to be displayed in the protocol window with [All readings] or [Failed readings].

Select the required evaluation in the protocol window.

The selected evaluation is displayed in the monitor window and in the result field.

Click on [Save the evaluation].

Define the memory location and assign a file name.

The evaluation and the image are saved.

12.1.2 All evaluations

Click on [Save all evaluations ...].

Define the memory location and assign a file name.

All evaluations and all images are saved.
12.2 Save service report

The service report saves the configuration of the device, the evaluation statistics (good/bad readings) and the last read results with image.

► Click on [Save service report ...].
► Define the memory location and assign a file name.
> The service report (HTML/XML file and BMP files) is saved.

Display of the evaluations or service reports via any internet browser (here e.g. Microsoft Internet Explorer)

12.3 Open service report

► Select [File] → [Open service report ...] in the menu bar.

► Define the memory location and open the file (.htm/.xml).
> The internet browser defined as standard in Windows opens (here e.g. Microsoft Internet Explorer).
> The service report is displayed.
Service reports or evaluations can also be opened in the Configurations or Monitor program modes.
13 Exit the program

13.1 Disconnect

► Select [Connections] → [Disconnect] in the menu bar. Alternatively: Click on the disconnect symbol in the tool bar →

► Acknowledge warning with [OK].

> The device is disconnected from the program.
The device is waiting for the trigger pulse and executes the group or configuration activated last.

13.2 Close program

► Select [File] → [Exit] in the menu bar.
14 Process data protocol

14.1 Quick reference guide of the commands

<table>
<thead>
<tr>
<th>Command</th>
<th>ASCII characters</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release trigger</td>
<td>T</td>
<td>14.4.1</td>
</tr>
<tr>
<td>Release trigger and output result</td>
<td>t</td>
<td>14.4.2</td>
</tr>
<tr>
<td>Request trigger mode</td>
<td>g?</td>
<td>14.4.3</td>
</tr>
<tr>
<td>Permanently activate configuration/group</td>
<td>a<group><number></td>
<td>14.4.4</td>
</tr>
<tr>
<td>Activate configuration/group</td>
<td>c<group><number></td>
<td>14.4.5</td>
</tr>
<tr>
<td>Request configuration/group</td>
<td>a?</td>
<td>14.4.6</td>
</tr>
<tr>
<td>Set reference code</td>
<td>r<number><refcode></td>
<td>14.4.7</td>
</tr>
<tr>
<td>Request reference code</td>
<td>r?</td>
<td>14.4.8</td>
</tr>
<tr>
<td>Request statistics</td>
<td>s?</td>
<td>14.4.9</td>
</tr>
<tr>
<td>Request last image</td>
<td>I?</td>
<td>14.4.10</td>
</tr>
<tr>
<td>Request last error image</td>
<td>F?</td>
<td>14.4.11</td>
</tr>
<tr>
<td>Request device information</td>
<td>D?</td>
<td>14.4.12</td>
</tr>
<tr>
<td>Select protocol version</td>
<td>v<digit><digit></td>
<td>14.4.13</td>
</tr>
<tr>
<td>Request protocol version</td>
<td>V?</td>
<td>14.4.14</td>
</tr>
<tr>
<td>Request the error code from the device</td>
<td>E?</td>
<td>14.4.15</td>
</tr>
<tr>
<td>External selection of the RDY/OUT outputs</td>
<td>o<digline><digstatus></td>
<td>14.4.16</td>
</tr>
</tbody>
</table>

14.2 Validity and area of application

The described features are implemented as of the firmware version 3070. The respective version of the operating program is 1.3.006.
14.3 Basics

14.3.1 Abbreviations and terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
<th>ASCII code (dec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Carriage Return</td>
<td>13</td>
</tr>
<tr>
<td>LF</td>
<td>Line Feed</td>
<td>10</td>
</tr>
<tr>
<td>CAN</td>
<td>Cancel</td>
<td>24</td>
</tr>
<tr>
<td>»</td>
<td>Tabulator</td>
<td>9</td>
</tr>
<tr>
<td>< ></td>
<td>Marking of a placeholder (e.g. <code> is a placeholder for code)</td>
<td></td>
</tr>
<tr>
<td>[]</td>
<td>Optional argument (possible but not required)</td>
<td></td>
</tr>
</tbody>
</table>

14.3.2 Commands to the device

- 8-bit ASCII characters are allowed.
- All commands to the device are terminated with an LF character. The device ignores all received CR characters.
- A command to the unit has to be transmitted within 5 s. Otherwise the unit will cancel command recognition.
- A sequence of 16 consecutive CAN characters reinitialises the command recognition.

14.3.3 Replies from the device

- All replies by the device are terminated with a CR and an LF character.
- As a reply to a valid command the device provides the character string * CR LF.
- As a reply to an invalid command the device provides the character string? CR LF.
- If the device is busy, it provides as a reply the character string! CR LF.

The CR and LF characters are not indicated in the following protocol description.
14.4 Commands to the device

14.4.1 Release trigger

<table>
<thead>
<tr>
<th>Command</th>
<th>T</th>
</tr>
</thead>
</table>

Possible reply

- The trigger was released: *
- Device is busy with evaluation or another trigger source is configured: !

Note
The read result is output when decoding is terminated.

14.4.2 Release trigger and output result

<table>
<thead>
<tr>
<th>Command</th>
<th>t</th>
</tr>
</thead>
</table>

Possible reply

- Result: Standard result output (→ 14.6) Result output with description (→ 14.7)
- Device is busy with evaluation: !
- Another trigger source has been configured: ?

Note
The standard result output does not end with a CR and LF character.

14.4.3 Request trigger mode

<table>
<thead>
<tr>
<th>Command</th>
<th>g?</th>
</tr>
</thead>
</table>

Possible reply

- Trigger input positive edge: T0
- Trigger input negative edge: T1
- Process interface: T2
- Free-running trigger (continuous): T3
- Device is busy with evaluation or at present no application active: !

14.4.4 Permanently activate configuration/group

<table>
<thead>
<tr>
<th>Command</th>
<th>a<group><number></th>
</tr>
</thead>
</table>

<group> is a 1-digit number and designates the group. Group 0 designates “no group”.
<number> is a 2-digit number, possibly with leading zero to designate the configuration.
<number> is ignored if the group is not equal to zero.

Possible reply

- Configuration/group activated: *
- Device is busy with evaluation: !
- Group is empty or configuration not available: ?

Example
Activating group 3 a300
14.4.5 Activate configuration/group

<table>
<thead>
<tr>
<th>Command</th>
<th>c<group><number></th>
</tr>
</thead>
<tbody>
<tr>
<td><group> is a 1-digit number and designates the group. Group 0 designates "no group".</td>
<td></td>
</tr>
<tr>
<td><number> is a 2-digit number, possibly with leading zero to designate the configuration.</td>
<td></td>
</tr>
<tr>
<td><number> is ignored if the group is not equal to zero.</td>
<td></td>
</tr>
</tbody>
</table>

Possible reply

- Configuration/group activated
 - *
- Device is busy with evaluation
 - !
- Group is empty or configuration not available
 - ?

Example

- Activating group 3
 - c300
- Activating configuration 12, not assigned to any group
 - c012

Note

The configuration/group is not permanently activated, i.e. it is not automatically active after the next power-on.

By activating a configuration/group this configuration/group is selected automatically.

14.4.6 Request configuration/group

<table>
<thead>
<tr>
<th>Command</th>
<th>a?</th>
</tr>
</thead>
</table>

Possible reply

- List of all configurations
 - <number> <G><NN> <G><NN> <G><NN> ...

- <number> is a 3-digit number and designates the number of configurations
- <G> designates the group.
- <NN> designates the configuration number.
- At first the number of the active configuration is output.
- The 3-digit numbers are separated by a blank.

- Device is busy with evaluation
 - !
14.4.7 Set reference code

<table>
<thead>
<tr>
<th>Command</th>
<th>r<number><refcode></th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible reply</td>
<td></td>
</tr>
<tr>
<td>Reference code has been set</td>
<td>*</td>
</tr>
<tr>
<td>Device is busy with evaluation</td>
<td>!</td>
</tr>
<tr>
<td>Error in the command (e.g. length 0)</td>
<td>?</td>
</tr>
</tbody>
</table>

Example

Set reference code with 13 characters (e.g. 4711081547110)

```
r0134711081547110
```

Note

Setting the reference code only has an effect if the device is in the comparing or pattern recognition mode. The submitted reference code is not stored permanently.

14.4.8 Request reference code

<table>
<thead>
<tr>
<th>Command</th>
<th>r?</th>
</tr>
</thead>
</table>

Possible reply

Normal case

```
<length><reference code>
```

Device is busy with evaluation or at present no application active

```
!
```

Note

<length> is a character string with exactly 3 digits which indicates the number of characters of the following reference code if interpreted as a decimal number.

14.4.9 Request statistics

<table>
<thead>
<tr>
<th>Command</th>
<th>s?</th>
</tr>
</thead>
</table>

Possible reply

Total number of readings (number₁)
Number of good readings (number₂)
Number of bad readings (number₃)

```
<number₁> <number₂> <number₃>
```

Device is busy with evaluation

```
!
```

The 10-digit numbers are separated by a blank.
14.4.10 Request last image

<table>
<thead>
<tr>
<th>Command</th>
<th>I?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible reply</td>
<td></td>
</tr>
<tr>
<td>Normal case</td>
<td><length><image data></td>
</tr>
<tr>
<td>Device is busy with evaluation or no evaluation performed or at present no application active</td>
<td>!</td>
</tr>
</tbody>
</table>

Note
<length> is a character string with exactly 9 digits, interpreted as decimal number indicating the length of the following image data in bytes. Image format according to setting in the operating program.

14.4.11 Request last error image

<table>
<thead>
<tr>
<th>Command</th>
<th>F?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible reply</td>
<td></td>
</tr>
<tr>
<td>Normal case</td>
<td><length><image data></td>
</tr>
<tr>
<td>Device is busy with evaluation or no evaluation performed or at present no application active</td>
<td>!</td>
</tr>
</tbody>
</table>

Note
<length> is a character string with exactly 9 digits, interpreted as decimal number indicating the length of the following image data in bytes. Image format according to setting in the operating program.

14.4.12 Request device information

<table>
<thead>
<tr>
<th>Command</th>
<th>D?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible reply</td>
<td></td>
</tr>
<tr>
<td>Normal case</td>
<td>IFM ELECTRONIC » Article » Device name » Device location » IP address » Subnet mask » Gateway » MAC address » XML-RPC port</td>
</tr>
</tbody>
</table>

14.4.13 Select protocol version

<table>
<thead>
<tr>
<th>Command</th>
<th>v<digit><digit></th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible reply</td>
<td></td>
</tr>
<tr>
<td>Normal case</td>
<td>*</td>
</tr>
<tr>
<td>The device does not support the protocol version indicated.</td>
<td>!</td>
</tr>
</tbody>
</table>

Note
<digit><digit> is to be interpreted as a 2-digit decimal number for the protocol version. The protocol version is not changed before the reply by the device.
14.4.14 Request protocol version

<table>
<thead>
<tr>
<th>Command</th>
<th>V?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal case</td>
<td><current><blank><min><blank><max></td>
</tr>
</tbody>
</table>

Note
- `<current>` is a 2-digit decimal number with current version.
- `<blank>` is a space character.
- `<min>` is a 2-digit decimal number with minimum version.
- `<max>` is a 2-digit decimal number with maximum version.

14.4.15 Request the error code from the device

<table>
<thead>
<tr>
<th>Command</th>
<th>E?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal case</td>
<td><code></td>
</tr>
</tbody>
</table>

Note
- `<code>` is the error code, character string with 4 digits, to be interpreted as decimal number.
- Error codes (→ 14.8)

14.4.16 External selection of the RDY/OUT outputs (only O2I3xx)

<table>
<thead>
<tr>
<th>Command</th>
<th>o<digline><digstatus></th>
</tr>
</thead>
<tbody>
<tr>
<td><code><digline></code></td>
<td>is a 1-digit number characterising the output that is to be selected.</td>
</tr>
<tr>
<td>1</td>
<td>OUT</td>
</tr>
<tr>
<td>2</td>
<td>RDY</td>
</tr>
<tr>
<td><code><digstatus></code></td>
<td>is a 1-digit number characterising the switching status.</td>
</tr>
<tr>
<td>0</td>
<td>LOW</td>
</tr>
<tr>
<td>1</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Possible reply
- Switching status was set |
- Device is busy with evaluation or command cannot be executed |
- Error in the command (e.g. length 0) |

Example
- Change switching status from output OUT to HIGH o11

Note
- The switching status of OUT cannot be changed if an external illumination is active.
- The command can therefore only be executed if the function "RDY/OUT activation" is set to "External" in the active configuration (→ 9.1)
- Within a group the external selection in the configuration that is used as image capture specification has to be activated (→ 6.3.2)
14.5 Global device settings

14.5.1 Send connect message
If the field [Send connection message] at [Global device settings] is not activated, the device will not output a message when the connection is established.
Format of that message:
IFM ELECTRONIC » Article » Device name » Device location » IP address » Subnet mask » Gateway » MAC address » XML-RPC port

14.5.2 Protocol version V1 (standard)

<table>
<thead>
<tr>
<th>Command (example)</th>
<th>s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible reply</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td>0000000012 0000000011 000000001</td>
</tr>
</tbody>
</table>

14.5.3 Protocol version V2 (with ticket)
The messages to the device are preceded by a 4-digit decimal number as ticket. The reply by the device starts with the same number. Messages and replies are then linked.

<table>
<thead>
<tr>
<th>Command (example)</th>
<th><digit>s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible reply</td>
<td></td>
</tr>
<tr>
<td>Ticket and statistics</td>
<td><digit>0000000012 0000000011 000000001</td>
</tr>
<tr>
<td>Note</td>
<td><digit> is a 4-digit decimal number as ticket. Tickets are allowed in the range 0000...9999. Replies that the device sends without preceding command (e.g. output of a read result with free-running trigger) have the ticket 0000.</td>
</tr>
</tbody>
</table>

14.5.4 Protocol version V3 (with ticket and length of message)
The messages to the device and the replies by the device are preceded by length information and a ticket. The length information is a 9-digit decimal number and refers to the following characters.

<table>
<thead>
<tr>
<th>Command (example)</th>
<th><figure>L000000008 <figure>s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible reply</td>
<td></td>
</tr>
<tr>
<td>Ticket and message length</td>
<td><figure>L0000000038 <figure>L0000000012 0000000011 000000001</td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td><digit> is a 4-digit decimal number as ticket. Tickets are allowed in the range 0000...9999. L000000008 is the length indication of the following command (here e.g. 8 digits “<digit>s?CRLF”).</td>
</tr>
</tbody>
</table>
14.5.5 Protocol version V4 (with length of message)

The replies by the device are preceded by length information; however, not the commands to the device.

<table>
<thead>
<tr>
<th>Command (example)</th>
<th>s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible reply</td>
<td></td>
</tr>
<tr>
<td>Length of message</td>
<td>L000000034</td>
</tr>
<tr>
<td>Statistics</td>
<td>0000000012 0000000011 0000000001</td>
</tr>
<tr>
<td>Note</td>
<td>L000000034 is the length indication of the following message (here e.g. 34 characters).</td>
</tr>
</tbody>
</table>
14.6 Standard result output

Output:
Reading result [reading result] ... [Image type Image length Image data]

Reading result:
Start string decoding result
[Symbol identity] [Code quality] [Configuration number] [Code position]
Stop string

- Decoding result
 Failed_reading_string
 or Code content
 or Good_reading_string

- Image type
 According to the setting "Image format" in the operating program, either the character string "BMP" for
 Windows Bitmap Format or "JPEG" for the JPEG format.

- Image length
 9 digits, interpreted as decimal numbers, indicating the number of bytes in the image data

- Image data
 Image content

- Start string
 According to the setting "Start string" in the operating program

- Stop string
 According to the setting "Stop string" in the operating program

- Symbol identity
 Character "0" or "1" as identification mark if the code contains FNC1 and/or ECI characters.
 Is transferred if "Symbol identity" is activated in the operating program.

- Code quality
 The code quality parameters correspond to the setting and sequence in the operating program.

- SEMI T10 code quality
 The code quality parameters correspond to the setting and sequence in the operating program.

 SEMI T10 is only available for unit O21300 to O21305.

- Configuration number
 3 digits. The first stands for the group, the last two for the number of the configuration by means of
 which decoding was effected.

- Code position
 Position of the found codes (pixel coordination).
 With the setting "Transmit code position: centre coordinates" the centre coordinates of each code are
 provided in the format "xxxx; yyyy;"
 xxxx and yyyy are 4-digit decimal numbers for the X or Y centre coordinates.
 With the setting "Transmit code position: corner coordinates", the coordinates of the four corner points
 are provided in the format "xxx1;yyy1;xxx2;yyy2;xxx3;yyy3;xxx4;yyy4;".

- Failed reading string
 According to the setting "Failed reading string" in the operating program

- Good reading string
 According to the setting "Good reading string" in the operating program. Replacements can be made
 in the "Regular expression" mode.

Legend:

[] = optional
... = repetition
14.7 Result output with description

With result output with description, describing markings, by means of which the output can be interpreted without any additional information, are added to the output.

A tag consists of the identifier and the length indication.

Identifier:
8-digit hexadecimal number, e.g. “1000f02e”

Length indication:
8-digit hexadecimal number always starts with the character “1”. The actual length results if this leading “1” is dropped.

Example: “10000015” means a length of 15h = 21d characters.

Output:
Prefix Main tag Read result
[[Reading result] ...] [Image tag Image data]

Reading result:
Result tag Start string Code tag Decoding result
[List tag [Symbol identity] [Code quality]]
[Configuration number]
[Position tag Code position]
Stop string

- Decoding result
 Failed_reading_string
 or Code content
 or Good_reading_string

- Code position
 Point X coord value text tag ; Y coord value text tag
 Point X coord value text tag ; Y coord value text tag ;
 Point X coord value text tag ; Y coordinate value text tag ;
 Point X coord value text tag ; Y coord value text tag ;

- Prefix
 Fixed character string
 “1a45dfa38e428288ifm pcic”

- Main tag
 Identifier “1000001f”

- Result tag
 Identifier “1000002f”

- Code tag
 Identifier “100001ee”

- Start string
 According to the setting "Start string" in the operating program
 Identifier “1000100e”

- Stop string
 According to the setting "Stop string" in the operating program
 Identifier “1000100e”

- List tag
 Identifier “1000003f”

- Symbol identity
 Character "0" or "1" as identification mark if the code contains FNC1 and/or ECI characters.
 Is transferred if "Symbol identity" is activated in the operating program.
 Identifier “1000 030e”
• **Code quality**
 The code quality parameters correspond to the setting and sequence in the operating program.

 - Identifier "1000 031e"
 Code quality overall (ECC200, PDF417, QR)

 - Identifier "1000 032e"
 Code quality contrast (ECC200, QR), Code quality defects (PDF417)

 - Identifier "1000 033e"
 Code quality modulation (ECC200, PDF417)

 - Identifier "1000 034e"
 Code quality finder pattern damage (ECC200, QR), Start/stop pattern (PDF417)

 - Identifier "1000 035e"
 Code quality decoding (ECC200, PDF417, QR)

 - Identifier "1000 036e"
 Code quality axial non uniformity (ECC200, QR), Code word yield (PDF417)

 - Identifier "1000 037e"
 Code quality grid distortion (ECC200, QR)

 - Identifier "1000 038e"
 Code quality unused error correction (ECC200, PDF417, QR)

 - Identifier "1000 039e"
 Code quality print growth (ECC200, PDF417, QR)

• **SEMI T10 code quality**
 The code quality parameters correspond to the setting and sequence in the operating program.

 SEMI T10 is only available for unit O2I300 to O2I305.

 - Identifier „1000 0600“
 P1 corner, row value

 - Identifier „1000 0601“
 P1 corner, column value

 - Identifier „1000 0602“
 P2 corner, row value

 - Identifier „1000 0603“
 P2 corner, column value

 - Identifier „1000 0604“
 P3 corner, row value

 - Identifier „1000 0605“
 P3 corner, column value

 - Identifier „1000 0606“
 P4 corner, row value

 - Identifier „1000 0607“
 P4 corner, column value

 - Identifier „1000 0608“
 Data Matrix rows

 - Identifier „1000 0609“
 Data Matrix columns

 - Identifier „1000 060a“
 Symbol Contrast

 - Identifier „1000 060b“
 Symbol Contrast SNR

 - Identifier „1000 060c“
 Horizontal Mark Growth
- Identifier „1000 060d“
 Vertical Mark Growth
- Identifier „1000 060e“
 Data Matrix Cell Width
- Identifier „1000 060f“
 Data Matrix Cell Height
- Identifier „1000 0610“
 Horizontal Mark Misplacement
- Identifier „1000 0611“
 Vertical Mark Misplacement
- Identifier „1000 0612“
 Cell Defects
- Identifier „1000 0613“
 Finder Pattern Defects
- Identifier „1000 0614“
 Unused Error Correction

● Configuration number
 Three digits. The first stands for the group, the last two for the number of the configuration by means of which decoding was effected. Identifier “1000 105e”

● Position tag
 Identifier “1000 004f”

● Point
 Identifier “1000 020f”

● X coordinate
 Identifier “1000 0210”

● Y coordinate
 Identifier “1000 0220”

● Text tag
 Identifier “1000 100e”

● Value
 Value of the X or Y pixel coordinate as 4-digit decimal number. With the setting "Transmit code position: centre coordinates" the centre coordinates of each code are provided. With the setting "Transmit code position: corner coordinates" the coordinates of the four corner points are provided.

● Failed_reading_string
 According to the setting "Failed reading string" in the operating program Identifier “100001ee”

● Good_reading_string
 According to the setting "Good reading string" in the operating program. Replacements can be made in the "Regular expression" mode. Identifier “100001ee”

● According to the setting "Image format" in the operating program, either identifier “1000 f02e” for Windows Bitmap format or “1000 f01e” for JPEG format

● Image data
 Image content
14.7.1 Example outputs

Example:

1a45dfa3 8e
Identifier '1a45dfa3': MAGIC
Length: Eh = 14d
Content:

4282 88 ifm pcic
Identifier '4282': DOCTYPE
Length: 8h = 8d
Content: 'ifm pcic'

1000001f 10000316
Identifier '1000001f': MAIN TAG
Length: 316h = 790d
Content:

1000002f 10000173
Identifier '1000002f': RESULT TAG
Length: 173h = 371d
Content:

1000100e 10000005 start
Identifier '1000100e': TEXT TAG
Length: 5h = 5d
Content: 'start'

1000000f 10000000 IFM
Identifier '1000000f': CODE TAG
Length: 3h = 3d
Content: 'IFM'

1000003f 100000aa
Identifier '1000003f': LIST TAG
Length: AAh = 170d
Content:

1000030e 10000001 1
Identifier '1000030e': SYMBOL.IDENTITY
Length: 1h = 1d
Content: '1'

1000031e 10000001 C
Identifier '1000031e': CODEQUALITYOVERALL
Length: 1h = 1d
Content: 'C'

Meaning:

1a45dfa3 e4282888ifm pcic1000001f1000003161000002f100001731000100e10000005start100
001ee10000003IFM1000003f1000000aa10000030e10000000111000031e10000001C1000032e100000
01C1000033e10000001C1000034e10000001C1000035e10000001A10000036e10000001A10000037e1
0000001A10000038e10000001A10000039e10000001A1000003Ae10000001A1000003Be10000001A100000
1002f1000000a41000002f1000001831000100e10000005start1000001ee10000013
30Q3Q3Q3Q3Q794<QQQ1000003f100000aa10000030e100000111000031e10000001C1000032e100
0001C1000033e10000001B10000034e10000001A10000035e10000001A10000036e10000001A100000
7e10000001A10000038e10000001A10000039e10000001A1000005100000003011000004f1000005a
1000020f10000004a1000021010000040464100100e10000001;1000022010000040362100100e1
e10000001;1000100e10000004stop
1000033e 10000001 C
Identifier '1000033e': CODEQUALITYMODULATION
Length: 1h = 1d
Content: 'C'

1000034e 10000001 C
Identifier '1000034e': CODEQUALITYPATTERN
Length: 1h = 1d
Content: 'C'

1000035e 10000001 A
Identifier '1000035e': CODEQUALITYDECODING
Length: 1h = 1d
Content: 'A'

1000036e 10000001 A
Identifier '1000036e': CODEQUALITYAXNONUNIF/YIELD
Length: 1h = 1d
Content: 'A'

1000037e 10000001 A
Identifier '1000037e': CODEQUALITYGRIDDISTO
Length: 1h = 1d
Content: 'A'

1000038e 10000001 A
Identifier '1000038e': CODEQUALITYUEC
Length: 1h = 1d
Content: 'A'

1000039e 10000001 A
Identifier '1000039e': CODEQUALITYPRINTGROWTH
Length: 1h = 1d
Content: 'A'

10001050 10000003 001
Identifier '10001050': CONFIGURATION NUMBER
Length: 3h = 3d
Content: '001'

1000004f 1000005a
Identifier '1000004f': POSITION TAG
Length: 5Ah = 90d
Content: ''

10000220 10000004 0081
Identifier '10000220': Y COORD
Length: 4h = 4d
Content: '0081'

1000100e 10000001 ;
Identifier '1000100e': TEXT TAG
Length: 1h = 1d
Content: ':'

10000210 10000004 0470
Identifier '10000210': X COORD
Length: 4h = 4d
Content: '0470'

1000100e 10000001 ;
Identifier '1000100e': TEXT TAG
Length: 1h = 1d
Content: ':'

10000220 10000004 0081
Identifier '10000220': Y COORD
Length: 4h = 4d
Content: '0081'

1000100e 10000001 ;
Identifier '1000100e': TEXT TAG
Length: 1h = 1d
Content: ':'

86
1000100e 10000004 stop
Identifier '1000100e': TEXT TAG
Length: 4h = 4d
Content: 'stop'

1000002f 10000183
Identifier '1000002f': RESULT TAG
Length: 183h = 387d
Content: "

1000100e 10000005 start
Identifier '1000100e': TEXT TAG
Length: 5h = 5d
Content: 'start'

100001ee 10000013 30Q324343430794<OQQ
Identifier '100001ee': CODE TAG
Length: 13h = 19d
Content: '30Q324343430794<OQQ'

1000003f 100000aa
Identifier '1000003f': LIST TAG
Length: AAh = 170d
Content: "

1000030e 10000001 1
Identifier '1000030e': SYMBOL IDENTITY
Length: 1h = 1d
Content: '1'

1000031e 10000001 C
Identifier '1000031e': CODEQUALITYOVERALL
Length: 1h = 1d
Content: 'C'

1000032e 10000001 C
Identifier '1000032e': CODEQUALITYCONTRAST/DEFECTS
Length: 1h = 1d
Content: 'C'

1000033e 10000001 B
Identifier '1000033e': CODEQUALITYMODULATION
Length: 1h = 1d
Content: 'B'

1000034e 10000001 A
Identifier '1000034e': CODEQUALITYPATTERN
Length: 1h = 1d
Content: 'A'

1000035e 10000001 A
Identifier '1000035e': CODEQUALITYDECODING
Length: 1h = 1d
Content: 'A'

1000036e 10000001 A
Identifier '1000036e': CODEQUALITYAXNONUNIF/YIELD
Length: 1h = 1d
Content: 'A'

1000037e 10000001 A
Identifier '1000037e': CODEQUALITYGRIDDISTO
Length: 1h = 1d
Content: 'A'

1000038e 10000001 A
Identifier '1000038e': CODEQUALITYUEC
Length: 1h = 1d
Content: 'A'
1000039e 10000001 A
Identifier '1000039e': CODEQUALITYPRINTGROWTH
Length: 1h = 1d
Content: 'A'

10001050 10000003 001
Identifier '10001050': CONFIGURATION NUMBER
Length: 3h = 3d
Content: '001'

1000004f 1000005a
Identifier '1000004f': POSITION TAG
Length: 5Ah = 90d
Content: ''

1000020f 1000004a
Identifier '1000020f': POINT
Length: 4Ah = 74d
Content: ''

10000210 10000004 0464
Identifier '10000210': X COORD
Length: 4h = 4d
Content: '0464'

1000100e 10000001 ;
Identifier '1000100e': TEXT TAG
Length: 1h = 1d
Content: ';'

10000220 10000004 0362
Identifier '10000220': Y COORD
Length: 4h = 4d
Content: '0362'

1000100e 10000001 ;
Identifier '1000100e': TEXT TAG
Length: 1h = 1d
Content: ';'

1000100e 10000004 stop
Identifier '1000100e': TEXT TAG
Length: 4h = 4d
Content: 'stop'
14.8 Error codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
<th>Memmonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>No configuration active</td>
<td>SENSOR_NOT_INITIALIZED</td>
</tr>
<tr>
<td>137</td>
<td>Active configuration does not allow a trigger via PCIC process interface</td>
<td>SENSOR_INVALID_TRIGGER_MODE</td>
</tr>
<tr>
<td>138</td>
<td>Invalid command format</td>
<td>SENSOR_INVALID_PARM</td>
</tr>
<tr>
<td>139</td>
<td>No image or error image available</td>
<td>SENSOR_NO_IMAGE</td>
</tr>
</tbody>
</table>
15 History

<table>
<thead>
<tr>
<th>PC operating program</th>
<th>Programming guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Ident number</td>
</tr>
<tr>
<td>1.0</td>
<td>704247 / 00</td>
</tr>
</tbody>
</table>
| 1.1 | 704247 / 01 | 10.2008 | Supplement
→ 3 System requirements
→ 3.4 Device firmware
Extension of function
Prepend reply length
→ 7.5 Global device settings |
| 1.3 | 704743 / 00 | 04.2010 | ● Code quality
– Overall quality as an option via selected quality features or via all features
– Selectable steps 0-4 or A-F
– Support for print growth
– Selected quality parameters are marked in the tool tip
– Quality parameters in the service report
● Output of the code position via process interface
– Corner coordinates or centre coordinates
– Output sorted from left to right, top to bottom
● Comparison code content with reference code via pattern and regular expression possible
● New settings for improved barcode reading
– Min./max. bar width, min./max. number of characters, read direction for pharmacodes
● Password protection
● Process interface
– Selectable output current image, request last image, last error image
– EtherNet/IP protocol
– Optional transmission of one message when the connection is established
● Support for RSS-14, RSS Limited and RSS expanded codes
● One image capture per configuration in group possible
● Miscellaneous
– Search zone can now also be changed with code definition
– Automatic code recognition in extended mode
– Improved service report
– Better performance when the supply voltage is switched off during DHCP and IP changes
– Teach optimised settings
– Adjustable relation saved error images/images
– Statistics can be reset in the monitor mode
– Process data protocol |
| 1.4 | 706359 / 00 | 08.2013 | ● Readable codes
– Support of Micro QR and Aztec codes
● Process interface
– New function "string numeration"
– New function "RDY/OUT activation" |
| 1.4 | 706359 / 00 | 07.2015 | Supplement
● Optical character recognition (OCR) |
| 1.4 | 706359 / 01 | 12.2015 | Supplement
● SEMI T10 code quality |