
Sensor de presión con membrana aflorante y con pantalla

PI-,10BREA01-MFRKG/US/ /P

- pantalla alfanumérica 4 dígitos
- indicadores LED de estado botón de programación
- 1 2 3 4 G1 junta cónica rosca exterior

atención: el equipo solo se puede montar en una conexión de proceso para juntas cónicas de estanqueidad G1. la junta cónica de estanqueidad G1 macho del equipo solo es apropiada para adaptadores con tope metálico.

Ranura con junta de estanqueidad

5

ACS (€ CRN CULUS EC 1935/2004 EHEDG Tested FCM FD € IO-Link Reg31 UK

Características del producto					
Número de entradas y salidas	Núm	Número de salidas digitales: 2; Número de salidas analógicas: 1			
Rango de medición	-0,0050,1 bar	-5100 mbar	-240,15 inH2O	-0,510 kPa	
Conexión de proceso	en una conexión	conexión de rosca G 1 rosca exterior junta cónica atención: el equipo solo se puede montar en una conexión de proceso para juntas cónicas de estanqueidad G1.; la junta cónica de estanqueidad G1 macho del equipo solo es apropiada para adaptadores con tope metálico.			

Campo de aplicación				
Característica especial		Contactos dorados		
Aplicación		montaje enrasado para la industria alimentaria y de bebidas		
Fluidos		fluidos viscosos o con partículas sólidas; fluidos líquidos y gaseosos		
Temperatura del fluido	[°C]	-25150		
Presión de rotura mín.		30000 mbar	12044 inH2O	3000 kPa
Resistencia a la presión		4000 mbar	1606 inH2O	400 kPa
Resistencia al vacío [[mbar]	-1000		
Tipo de presión		presión relativa; vacío		
Sin espacios muertos		sí		
PTMA en aplicaciones según el NRC	[bar]	4		

Sensor de presión con membrana aflorante y con pantalla

PI-,10BREA01-MFRKG/US/ /P					
Datos eléctricos					
Resistencia de aislamiento mín.	[ΜΩ]	100; (500 V DC)			
Clase de protección		III			
Protección contra inversiones de polaridad		sí			
Perro guardián integrado				sí	
2-hilos					
Tensión de alimentación	[V]	2030 DC			
Consumo de corriente	[mA]	3,521,5			
Retardo a la disponibilidad	[s]	< 1			
3 hilos					
Tensión de alimentación	[V]		18	30 DC	
Consumo de corriente	[mA]		545; (430 bei	i max. Laststrom)	
Retardo a la disponibilidad	[s]		<	0,5	
Entradas/salidas					
Número de entradas y salidas		Númer	o de salidas digitales: 2;	Número de salidas ana	alógicas: 1
Salidas					
Número total de salidas		2			
Señal de salida		señal de conmutación; señal analógica; IO-Link			
Alimentación		PNP/NPN			
Número de salidas digitales		2			
Función de salida		normalmente abierto / normalmente cerrado; (parametrizable)			
Número de salidas analógicas		1			
Salida analógica de corriente	[mA]	420, invertible; (escalable)			
Protección contra cortocircuitos		sí			
Tipo de protección contra cortocircuitos		pulsada			
Resistente a sobrecargas		Sí			
2-hilos					
Carga máx.	[Ω]	300			
3 hilos					
Caída de tensión máx. de la salida de conmutación DC	[V]	2			
Corriente máxima permanente de la salida de conmutación DC	[mA]	100			
Frecuencia de conmutación DC	[Hz]	125			
Carga máx.	[Ω]	(Ub - 10 V) / 21,5 mA; 650 Ω (Ub = 24 V)			
Rango de configuración / m	edición				
Rango de medición		-0,0050,1 bar	-5100 mbar	-240,15 inH2O	-0,510 kPa
Punto de conmutación SP		-0,00490,1 bar	-4,9100 mbar	-1,9540,15 inH2O	-0,4910 kPa
Punto de desconmutación rP		-0,0050,099 bar -599,9 mbar -2,0140,09 inH2O -0,59,99 kPa			

Sensor de presión con membrana aflorante y con pantalla

-0,0050,08 bar						
	-580 mbar	-2,0132,12 in		-0,58 kPa		
0,0150,1 bar	15100 mbar	6,0240,15 inl	120	1,510 kPa		
	0,2 mbar			0,02 kPa		
0,0001 bar	0,1 mbar			0,01 kPa		
	SP1 =25	mbar	rP1 = 2	23 mbar		
	SP2 = 75	5 mbar	rP2 = 7	73 mbar		
	ASP = 0	mbar	AEP = 100 mbar			
	dAP = 2,	,00 s	dAA =2,00 s			
-25150 °C		-13302 °F				
	< ± 0,5; (DIN EN IEC 62828-1; Turn down 1:1)					
gen]						
gen] < ± 0,2	; (en caso de variacion	nes de temperatura < :	10 K; T	urn down 1:1)		
	< ± 0,5; (DIN IEC EN	N 62828-1 incl. error de	el punto	cero		
gen]						
gen]	< ± 0,25; (Turn down 1:1)					
gen]	< ± 0,2, (Tulli down 1.1)					
	< + 0.1° (Turn down 1:1° cada año)					
gen]	1] < ± 0,1, (Tuill down 1.1, Cada					
Rango de tempe	ratura	desviación tot	desviación total			
-2515 °C	-2515 °C Exactitud señal analógica \pm 0,15 % margen / 10 K		gica ± 0,15 % del			
1580 °C		Exactitud señal	l analóg	jica		
80150 °C		Exactitud señal margen / 10 K	l analóg	gica ± 0,2 % del		
р	para más detalles, véase el apartado de diagramas y curvas			curvas		
[K] ±:	2,5+ (0,08 x (Umgebu	ngstemperatur - Mediu	umtemp	peratur))		
[K]		± 0,2	·			
[K]	0,2					
[S]	099,99					
[S]	099,99					
[ms]	30					
	0,0002 bar 0,0001 bar -25150 °C gen] gen] gen] gen] Rango de tempe -2515 °C 1580 °C 80150 °C p [K] [K] [K] [S] [s]	0,0002 bar	0,0002 bar 0,2 mbar 0,06 inH2O 0,001 inH2O 0,0001 bar 0,1 mbar 0,01 inH2O SP1 = 25 mbar SP2 = 75 mbar ASP = 0 mbar dAP = 2,00 s -25150 °C -13302 °F <pre> -25150 °C -13302 °F -25150 °C -15302 °C -25150 °C -1530</pre>	0,0002 bar		

fluido

Sensor de presión con membrana aflorante y con

pantalla PI-,10BREA01-MFRKG/US/ /P Tiempo de respuesta a [ms] 7 un escalón para la salida analógica Supervisión de temperatura Tiempo de respuesta [s] < 35 / < 135; (DIN EN 60751 agua; > 0,9 m/s) dinámico T05 / T09 Interfaces Interfaz de comunicación IO-Link Tipo de transmisión COM2 (38,4 kBaud) Revisión IO-Link 1.1 Norma SDCI IEC 61131-9 Perfiles Identification and Diagnosis (0x4000), Measurement Data Channel (0x800A) Modo SIO SÍ Clase de puerto de maestro Α requerido Tiempo mínimo del ciclo de [ms] 5,6 proceso Resolución IO-Link para [mbar] 0,005 presión Resolución IO-Link para [K] 0,2 temperatura función Datos del proceso IO-Link Longitud de bits (cíclico) Presión 32 Temperatura 32 4 Estado del equipo 2 Información binaria de conmutación Funciones IO-Link (acíclico) Marcado específico de la aplicación; temperatura interna; Contador de horas de funcionamiento; contador de ciclos de conmutación; Contador de picos de presión Modo de funcionamiento DeviceIDs compatibles **DeviceID** default 1158 Condiciones ambientales Temperatura ambiente [°C] -25...80 Temperatura de [°C] -40...100 almacenamiento Grado de protección IP 67; IP 68; IP 69K Homologaciones / pruebas CEM DIN EN 61326-1 Resistencia a choques DIN EN 60068-2-27 50 g (11 ms) Resistencia a vibraciones DIN EN 60068-2-6 20 g (10...2000 Hz) MTTF [años] 214 Nota sobre la homologación El certificado de fábrica se puede descargar en www.factory-certificate.ifm Homologación UL Número de homologación UL J049 Número de registro UL E174189 Datos mecánicos Peso [g] 384,8 Materiales inox (1.4404 / 316L); FKM; PTFE; PBT; PEI; PFA Materiales en contacto con el

céramica (99,9 % Al2 O3); 1.4435 (inox / 316L); acabado: Ra < 0,4 / Rz 4; PTFE

Sensor de presión con membrana aflorante y con pantalla

PI-,10BREA01-MFRKG/US/ /P

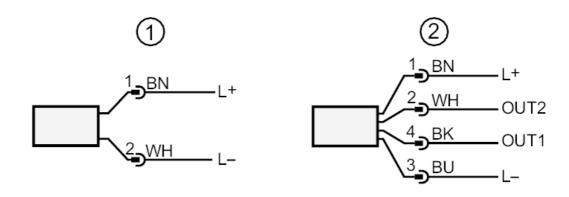
Ciclos de presión mín.		100 millones	
Par de apriete	[Nm]	20	
Conexión de proceso		conexión de rosca G 1 rosca exterior junta cónica atención: el equipo solo se puede montar en una conexión de proceso para juntas cónicas de estanqueidad G1.; la junta cónica de estanqueidad G1 macho del equipo solo es apropiada para adaptadores con tope metálico.	

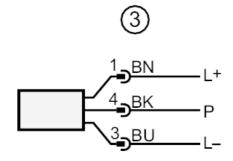
Indicaciones / elementos de	mando		
Indicación	Unidad de indicación	LED, verde	
	Estado de conmutación	LED, amarillo	
	indicador de funcionamiento	pantalla alfanumérica, 4 dígitos	
	valores de medición	pantalla alfanumérica, 4 dígitos	
Unidad de indicación	mbar; kPa; inH2O		

Cantidad por pack 1 unid.	
Caritada por pack	

Conexión eléctrica

Conector: 1 x M12; codificación: A; Contactos: dorado




Sensor de presión con membrana aflorante y con pantalla

PI-,10BREA01-MFRKG/US/ /P

Conexión

Conexión para funcionamiento con 2 hilos
Conexión para funcionamiento con 3 hilos

OUT1 salida de conmutación / IO-Link

OUT2 salida de conmutación / salida analógica

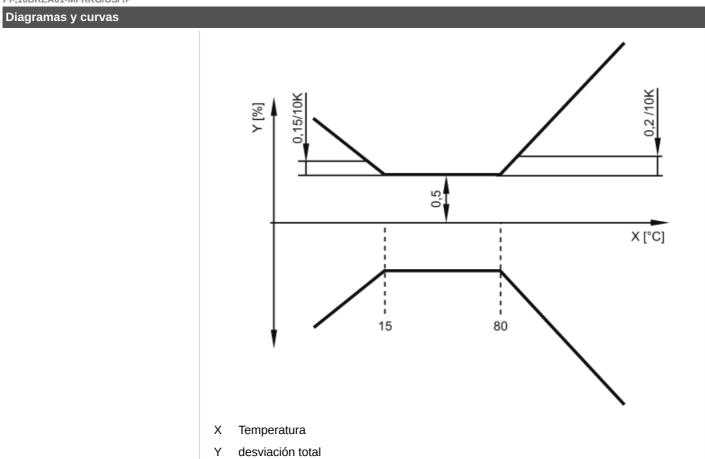
3 Conexión para parametrización IO-Link (P = comunicación a través de IO-Link)

identificación de colores según DIN EN 60947-5-2

Colores de los hilos

 BK =
 negro

 BN =
 marrón


 BU =
 azul

 WH =
 blanco

Sensor de presión con membrana aflorante y con pantalla

PI-,10BREA01-MFRKG/US/ /P

